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Abstract: Eggs—particularly egg yolks—are a rich source of bioactive nutrients and dietary com-
pounds that influence metabolic health, lipid metabolism, immune function, and hematopoiesis. We
investigated the effects of consuming an egg-free diet, three egg whites per day, and three whole
eggs per day for 4 weeks on comprehensive clinical metabolic, immune, and hematologic profiles in
young, healthy adults (18–35 y, BMI < 30 kg/m2 or <30% body fat for men and <40% body fat for
women, n = 26) in a 16-week randomized, crossover intervention trial. We observed that average
daily macro- and micronutrient intake significantly differed across egg diet periods, including greater
intake of choline during the whole egg diet period, which corresponded to increased serum choline
and betaine without altering trimethylamine N-oxide. Egg white and whole egg intake increased
serum isoleucine while whole egg intake reduced serum glycine—markers of increased and decreased
risk of insulin resistance, respectively—without altering other markers of glucose sensitivity or in-
flammation. Whole egg intake increased a subset of large HDL particles (H6P, 10.8 nm) and decreased
the total cholesterol:HDL-cholesterol ratio and % monocytes in female participants using combined
oral contraceptive (COC) medication (n = 11) as compared to female non-users (n = 10). Whole egg
intake further increased blood hematocrit whereas egg white and whole egg intake reduced blood
platelet counts. Changes in clinical immune cell counts between egg white and whole egg diet periods
were negatively correlated with several HDL parameters yet positively correlated with measures of
triglyceride-rich lipoproteins and insulin sensitivity. Overall, the intake of whole eggs led to greater
overall improvements in micronutrient diet quality, choline status, and HDL and hematologic profiles
while minimally—yet potentially less adversely—affecting markers of insulin resistance as compared
to egg whites.

Keywords: eggs; diet composition; body composition; metabolic panel; insulin sensitivity; serum
lipids; lipoprotein profiles; clinical immune profiles; combined oral contraceptives

1. Introduction

Eggs are a rich source of bioactive nutrients and dietary compounds with roles in the
regulation of metabolic health, lipid metabolism, immune function, and hematopoiesis [1–3].
The composition of egg white and egg yolk fractions are distinct [4]. While high biological
value protein and B vitamins are provided by both egg whites (10.9 g protein/100 g) and
egg yolks (15.9 g protein/100 g), egg yolks additionally serve as a relatively rich source of
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choline-containing glycerophospho- and sphingolipids, fatty acids (34.7% saturated, 48.7%
monounsaturated, and 16.7% polyunsaturated), water-soluble forms of choline, cholesterol,
all vitamins except vitamin C—including the majority of B vitamins that are also present
in lower amounts in egg whites. Eggs are additionally rich in minerals and essential trace
elements, with egg yolks providing more grams of calcium, copper, iodine, iron, manganese,
phosphorous, selenium, and zinc per 100 g, whereas egg whites are relatively richer in
magnesium, potassium, and sodium [5]. Further, egg yolks contain antioxidant carotenoids,
including lutein and zeaxanthin [6]. Accordingly, eggs are recognized as the most cost-
effective animal source of protein and numerous micronutrients, which may reduce disease
burden of at-risk and underserved populations. Egg consumption is additionally associated
with greater overall nutrient density and quality of the diet [7–9].

Given the potential nutritional benefits and socioeconomic accessibility of egg intake,
the effects of egg consumption on clinical measures of nutritional status, cardiometabolic
risk factors, and hematologic (mainly erythrocyte) profiles have been evaluated in observa-
tional and intervention studies; however, the results are often inconsistent and controversial,
which may in part be due to differences in study designs (number of eggs per day, du-
ration of egg treatment), populations (healthy vs. metabolic dysfunction), background
diets (weight stable vs. weight loss), and individual variability between subjects [10–16].
Further, studies often focus on a narrow range of biomarkers rather than providing a
comprehensive assessment of standard clinical metrics, which is essential for determining
the balance of potential beneficial vs. adverse responses to diet. As a result, studies have
reported varied changing and null effects on serum lipids, lipoprotein profiles, and serum
inflammatory markers [1,17] in addition to conflicting effects on serum trimethylamine
N-oxide (TMAO) [18,19]—a pro-atherogenic choline-derived metabolite produced by gut
bacteria [20]—despite recent epidemiolocal studies finding null or beneficial associations
between egg intake and cardiovascular disease (CVD) outcomes [14,21]. Similarly, while
epidemiological studies have reported conflicting associations between egg intake and
type 2 diabetes mellitus (T2DM) risk [15,22], intervention studies often report a null or
beneficial effect of egg intake on traditional markers of insulin resistance [10,19,23] and do
not incorporate emerging biomarkers, such as plasma concentrations of branched-chain
amino acids and glycine [24,25]. Further, studies report minimal to no effects of egg intake
on improving anthropometric and erythrocyte profiles [16,26,27] and fail to incorporate an
assessment of clinical immune profiles—despite the utility of white blood cell (WBC) and
differential leukocyte counts in predicting chronic disease risk [28,29] and evidence from
animal and human studies suggesting that egg intake alters immune cell gene expression,
responsiveness to lipopolysaccharide, and pathogen defenses [30–33].

Therefore, we sought to evaluate the effects of consuming an egg-free, egg white,
and whole egg diet on comprehensive clinical markers of diet quality, nutritional status,
cardiometabolic risk, and hematologic profiles that are commonly assessed in healthcare
settings and are controversial and/or lacking assessment in dietary intervention trials. We
conducted this trial in young, healthy adults to evaluate diet effects without the complica-
tion of metabolic dysfunction or additional background diet confounders. In a subgroup
analysis, we further evaluated whether the use of combined oral, hormone-based contra-
ceptive (COC) medication in female subjects impacted the response to egg diets, given that
COC use is prevalent in groups representative of our study population (young women
aged 18–35 y), and the use of COC has been shown to impact cardiometabolic and immune
measurements assessed in this study [34–37].

2. Materials and Methods
2.1. Study Participants

Twenty-eight women and men were recruited and enrolled to participate in a 16-week
randomized cross-over dietary intervention trial. Participants were eligible for the study
if they were age 18–35-years-old at the time of screening, had a BMI < 30 kg/m2 or <30%
body fat for men and <40% body fat for women, and were willing to consume eggs and
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egg whites on a daily basis during study periods. Individuals were excluded from the
study if they had a self-reported history of diabetes mellitus, coronary heart disease, stroke,
renal problems, liver disease, cancer, autoimmunity, chronic infections, egg allergy, or
current pregnancy or lactation. Additional exclusion criteria included taking lipid-lowering
medications (e.g., statins, fibrates) and having a preexisting medical condition or implanted
medical device that prevents participation in bioelectrical impedance measurements of
body composition. Individuals were additionally excluded if they had fasting triglyceride
levels higher than 500 mg/dL, fasting glucose higher than 126 mg/dL, and plasma total
cholesterol greater than 240 mg/dL. Information on health history and use of medications
and/or dietary supplements was collected via a medical questionnaire, whereas fasting
blood lipid and glucose levels were measured in blood obtained via finger prick utilizing
a Cholestech LDX analyzer and Lipid Profile + Glucose cassettes (Alere, Inc., Hayward,
CA, USA) at screening. Body mass index (kg/m2) was calculated following measurement
of body height and weight. Body height was determined utilizing a Tanita HR-200 wall-
mounted height rod (Tanita Corporation of America, Arlington Heights, IL, USA), whereas
body weight and body fat composition was measured utilizing a Tanita SC-240 digital scale
with bioelectrical impedance function. This study was approved by the Fairfield University
Institutional Review Board (protocol #0511), and all subjects provided written, informed
consent prior to screening. This study was registered at ClinicalTrials.gov (NCT03577223).

2.2. Study Design and Dietary Intervention

The 16-week dietary intervention utilized a randomized cross-over design. Following
enrollment into the study, participants entered a 4-week egg-free diet run-in period, during
which they were asked to refrain from consuming whole eggs, egg whites, or predominantly
egg-based foods where egg fractions constituted more than a minor ingredient (egg-free
diet). Participants were then randomly assigned to consume either 3 large shelled whole
eggs/day (whole egg diet) or the equivalent of 3 large egg whites (0.5 cup liquid egg whites,
Wholesome Farms, Sysco Corporation, Houston, TX, USA)/day (egg white diet) for 4 weeks.
Participants then entered a 4-week egg-free washout period, followed by assignment to
the alternative whole egg- or egg white-based diet treatment for the final 4 weeks of the
intervention. All whole eggs and egg white food products were pasteurized and provided
to the participants, who were asked to refrain from consuming any outside egg products.
Whole eggs were provided as shelled eggs to provide participants with greater flexibility
in preparation during the whole egg diet period, and 100% egg whites were provided in
cartons during the egg white diet period. Egg white ingredients included egg whites, guar
gum, and triethyl citrate as whipping aids. Participants were allowed to consume study
eggs at any time of day using preferred cooking methods and instructed to fully cook eggs
for food safety. Table 1 summarizes the difference in nutrition composition for each daily
egg treatment (equivalent to 3 large whole eggs or 3 large egg whites per day).

Participants were asked to maintain their habitual dietary patterns, level of physical ac-
tivity, and usage of supplements and medications throughout the duration of the study, all
of which were monitored by surveys. Of note, approximately half of the female participants
were taking combined oral contraceptive (COC) medication (n = 11, n = 10 non-users). Par-
ticipants were weighed using a digital scale every two weeks to ensure weight maintenance
throughout the intervention.

A total of 29 individuals were screened for participation in the study. One individual
did not meet the study criteria and was excluded from participating in the study. Twenty-
eight participants (twenty-one female, seven male) met the study criteria and were enrolled
into the study. Two participants (both male) withdrew for reasons unrelated to the study
within the first few weeks of the egg-free diet period and were excluded from analyses. An
overview of the study flowchart is presented in Figure 1.
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Table 1. Nutrient composition of daily egg treatment.

Nutrient Egg White Diet Whole Egg Diet

Total energy, kcal 75 1 215.7
Total carbohydrates, g 3 1 1.4

Total protein, g 15 1 18.7
Total fat, g 0 1 15

Cholesterol, mg 0 1 621
Vitamin A, µg 0 1 271.5
Vitamin C, mg 0 1 0
Vitamin D, µg 0 3.7

Vitamin B2, mg 0.4 0.6
Choline, mg 0 507

Lutein + Zeaxanthin, µg 0 693
Selenium, µg 18.2 46.8
Sodium, mg 225 1 194.7

Zinc, mg 0 1.9
Iron, mg 0 1 2.5

Calcium, mg 0 1 72.3
Nutrient composition of 3 large whole shelled eggs (whole egg diet) and the equivalent of 3 large egg whites (egg
white diet), based on data retrieved from USDA FoodData Central database or 1 nutrient data from the nutrition
facts label for the liquid egg white study food [38].
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2.3. Dietary Intake Analysis

To assess dietary nutrient and food group composition and compliance to egg treat-
ments, participants completed 5-day food and beverage intake records at the end of the
first egg-free diet period (week 4), and at the end of the egg white and whole egg diet
periods (week 8 and week 16). The 5-day diet recording period consisted of 3 weekdays and
2 weekend days. Average daily nutrient composition and intake analysis was determined
utilizing the Nutrition Data System for Research (NDSR, Nutrition Coordinating Center,
University of Minnesota, Minneapolis, MN, USA). Compliance to the egg diet treatments
was additionally monitored by completion of a daily egg intake questionnaire.

2.4. Body Composition Analysis

Body composition was determined at the end of the first egg-free diet period (week 4),
and the end of the egg white and whole egg diet periods (week 8 and week 16). Body weight
and composition (% body fat, fat mass, fat-free mass, muscle mass) were determined as
described above utilizing a Tanita SC-240 digital scale with bioelectrical impedance function.
BMI (kg/m2) was calculated following measurement of body height and weight, with body
height determined as described above utilizing a Tanita HR-200 wall-mounted height rod
(Tanita Corporation of America, Arlington Heights, IL, USA).

2.5. Blood Collection

Fasted blood samples were collected after a 12-h overnight fast via venipuncture into
EDTA and SST tubes at the end of the first egg-free diet period and the end of the whole egg
and egg white diet periods. Serum was isolated by centrifugation at 1200× g for 10 min at
20 ◦C in an Allegra X-14R swing-bucket centrifuge (Beckman Coulter, Inc., Brea, CA, USA)
and aliquoted under sterile conditions for analyses described below. EDTA whole blood
was aliquoted for analysis of complete blood cell counts.

2.6. Clinical Metabolic Parameters and Measures of Choline Status

Clinical metabolic profiles were determined in fasting serum. Fasting serum glu-
cose and lipids, including total cholesterol, HDL-cholesterol (HDL-C), and triglycerides,
were measured by spectrophotometry by Quest Diagnostics (Seacaucus, NJ, USA). LDL-
cholesterol (LDL-C) was determined using the Martin–Hopkins calculation. Serum elec-
trolytes (sodium, potassium, chloride, calcium), carbon dioxide, measures of protein status,
liver, and kidney function (blood urea nitrogen, serum total protein, albumin, globu-
lin, albumin:globulin ratio, bilirubin, alkaline phosphatase), and the acute-phase liver
enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were ad-
ditionally measured by Quest Diagnostics. High-sensitivity C-reactive protein (hsCRP)
was measured enzymatically utilizing a Cobas c-111 clinical analyzer (Roche Diagnos-
tics, Florham Park, NJ, USA). Serum concentrations of ketones (total ketone bodies, beta-
hydroxybutyrate, acetoacetate, and acetone), choline, betaine, and TMAO were measured
by LabCorp (Morrisville, NC, USA).

2.7. Lipoprotein Size Profiles

Triglyceride-rich lipoprotein (TRLP), LDL, and HDL particle profiles were determined
by nuclear magnetic resonance (NMR) by LabCorp (Morrisville, NC, USA) in serum sam-
ples, as previously described [10]. Measures included the concentration of total TRLP, LDL,
and HDL particles, in addition average TRLP, LDL, and HDL particle diameters (nm).
Serum concentrations particle subclasses were additionally reported, including concentra-
tions of very large TRLP (90–240 nm), large TRLP (50–89 nm), medium TRLP (37–49 nm),
small TRLP (30–36 nm), and very small TRLP (24–29 nm). For LDL, serum concentrations
of large LDL (21.5–23 nm), medium LDL (20.5–21.4 nm), and small LDL (19–20.4 nm) were
reported. HDL subclasses are reported as the concentrations of total small (7.4–8.0 nm),
medium (8.1–9.5 nm), and large (9.6–13 nm) HDL in addition to concentrations of HDL
particles of defined sizes: H1P (7.4 nm), H2P (7.8 nm), H3P (8.7 nm), H4P (9.5 nm), H5P
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(10.3 nm), H6P (10.8 nm), H7P (12.0 nm). Data for TRLP and LDL are reported as nmol/L,
whereas data for HDL are reported as µmol/L. Serum concentrations of apolipoprotein B
(apoB) and apolipoprotein A-1 (apoA-1) were similarly measured by NMR and are reported
as mg/dL.

2.8. Serum Amino Acid and Insulin Resistance Measures

Serum concentrations of amino acids (total branched-chain amino acids, valine, leucine,
isoleucine, alanine, and glycine) were measured by LabCorp using liquid chromatogra-
phy/tandem mass spectrometry (LC-MS/MS) analysis. Serum glycA—a measure of protein
levels and glycosylation states of several of the most abundant acute-phase proteins in
serum [39]—and citrate were determined by NMR. Data generated from lipoprotein profiles
and amino acids were additionally used to calculate (1) a lipoprotein–insulin resistance
index (LP–IR), and (2) diabetes risk index (DRI), as reported by LabCorp. LP–IR is calcu-
lated from a combination of six lipoprotein parameters, including large very low-density
lipoprotein (VLDL) particle number, VLDL size, small low-density lipoprotein (LDL) par-
ticle number, LDL size, large high-density lipoprotein (HDL) particle number, and HDL
size via LabCorp’s proprietary Vantera® platform (Coral Gables, FL, USA). LP–IR values
range from 0 (most insulin sensitive) to 100 (most insulin resistant). DRI is calculated from
LP–IR plus the concentrations of valine and leucine. DRI values range from 0 (most insulin
sensitive) to 100 (most insulin resistant).

2.9. Complete Blood Cell Counts

Complete blood cell counts were measured in freshly collected EDTA whole blood by
Quest Diagnostics by electronic cell sizing/counting/cytometry/microscopy. Data reported
include total white blood cell counts and differential absolute and % neutrophils, lympho-
cytes, monocytes, eosinophils, and basophils. Additional hematologic parameters reported
include total red blood cells, total hemoglobin and hematocrit, mean corpuscular volume and
mean corpuscular hemoglobin concentration, and platelet concentrations. Clinically-relevant
immune ratios, including neutrophil:lymphocyte and lymphocyte:monocyte ratios were calcu-
lated as follows: neutrophil:lymphocyte ratio = absolute neutrophils ÷ absolute lymphocytes;
lymphocyte:monocyte ratio = absolute lymphocytes ÷ absolute monocytes [40,41].

2.10. Statistical Analysis

Analysis was performed on data derived from the 26 participants who completed the
study unless otherwise noted due to limited sample availability to complete all measures
for each participant. Baseline characteristics of participants included in final analyses are
included in Supplementary Table S1. Samples from participants at each time point were
analyzed in the same batches in order to minimize variability across assay runs. Repeated
measures ANOVA with pairwise comparisons was performed using SPSS Version 28 to
compare the effects of different egg diets on clinical outcome measures. Independent t-tests
were used to compare changes in outcome measures following the egg white vs. whole egg
period between COC users (n = 11) vs. non-users (n = 10) in female participants. Bivariate
Pearson correlations were performed to evaluate associations between changes in metabolic
and hematologic parameters across diet periods. All data are presented as mean ± standard
deviation unless otherwise noted. Values with different letters (a, b, c) are significantly
different, as are comparisons denoted with an asterisk (* p < 0.05).

3. Results
3.1. Average Daily Nutrient Intake Differed across Egg Diet Periods

Given the differences in the nutrient composition of egg whites and egg yolks, we first
evaluated whether adherence to the different egg diets impacted average daily nutrient
intake of the diet as a whole. An analysis of five-day dietary records indicated that an
average daily intake of nutrients with known anti-inflammatory, antioxidant, metabolic,
immunomodulatory, and hematopoietic properties differed across egg diet periods (Table 2).
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While energy intake remained consistent across diet periods, % macronutrient intake
differed, with % carbohydrate and % fat intake decreasing and increasing, respectively,
from the egg-free diet to the egg white and whole egg diets. Compared to the egg-free diet,
intake of animal protein, polyunsaturated fat, and sodium was increased during the whole
egg diet, whereas intake of total fat, monounsaturated fat, arachidonic acid, and cholesterol
was increased during the whole egg diet period compared to both the egg-free and egg
white diet periods. Consumption of total protein foods and oils on average were increased
during the egg white and whole egg diet periods as compared to the whole egg diet
period (Table S2). We additionally assessed the intake of amino acids that serve as serum
indicators of insulin resistance, which were not changed over the course of the intervention.
In line with egg yolks serving as a rich, bioavailable source of the antioxidant carotenoids
lutein and zeaxanthin [4,6], we observed that, compared to the egg-free diet, the average
daily intake of lutein and zeaxanthin was increased during the whole egg diet period.
Notably, intake of various micronutrients was also increased in the whole egg diet periods
relative to the egg white diet period, including pantothenic acid, vitamin B12, vitamin D,
and phosphorus, whereas selenium intake was greater during the whole egg diet period
compared to both the egg-free and egg white diet periods. Finally, given that egg yolks
serve as a rich source of choline (provided by glycerophospho- and sphingolipids) [11],
average dietary intake of choline was increased during the whole egg diet period compared
to both the egg-free and egg white diet periods.

Table 2. Average daily nutrient intake of participants throughout egg diet periods.

Daily Intake Totals Egg-Free Diet Egg White Diet Whole Egg Diet p-Value

Total energy, kcal 1948.4 ± 817.7 1837.0 ± 633.2 2069.3 ± 586.7 0.240
Carbohydrates, % of kcal 49.5 ± 7.0 a 45.6 ± 6.7 b 41.8 ± 7.7 c <0.001

Protein, % of kcal 16.0 ± 4.4 18.3 ± 4.6 17.8 ± 3.9 0.062
Fat, % of kcal 32.2 ± 4.3 a 34.8 ± 5.2 b 39.4 ± 6.0 c <0.001

Total carbohydrates, g 244.1 ± 109.6 209.9 ± 75.9 221.6 ± 80.8 0.201
Total protein, g 77.4 ± 36.7 79.2 ± 25.1 88.0 ± 32.6 0.215

Animal protein, g 45.6 ± 26.4 a 52.4 ± 19.2 ab 58.4 ± 23.3 b 0.023
Vegetable protein, g 31.8 ± 15.3 26.7 ± 10.2 29.5 ± 19.6 0.333

Alanine, g 3.45 ± 1.64 3.80 ± 1.26 4.12 ±1.54 0.080
Glycine, g 3.06 ± 1.38 3.21 ± 1.22 3.42 ± 1.36 0.390

Isoleucine, g 3.44 ± 1.71 3.71 ± 1.14 4.08 ± 1.50 0.101
Leucine, g 5.96 ± 2.88 6.23 ± 1.90 6.90 ± 2.50 0.145
Valine, g 3.88 ± 1.86 4.22 ± 1.21 4.56 ± 1.59 0.150

Total fat, g 71.6 ± 31.5 a 75.8 ± 33.5 a 92.1 ± 25.9 b 0.003
Saturated fat, g 24.1 ± 11.3 25.1 ± 13.1 29.5 ± 8.3 0.058

Monounsaturated fat, g 24.7 ± 10.9 a 25.9 ± 12.7 a 32.6 ± 9.8 b 0.001
Polyunsaturated fat, g 16.7 ± 9.2 a 18.8 ± 9.5 ab 21.4 ± 9.6 b 0.035

Arachidonic acid, g 0.12 ± 0.13 a 0.11 ± 0.06 a 0.29 ± 0.08 b <0.001
EPA, g 0.03 ± 0.06 0.03 ± 0.05 0.04 ± 0.07 0.598
DHA, g 0.07 ± 0.13 0.06 ± 0.11 0.12 ± 0.21 0.245

Alcohol, g 6.1 ± 8.6 3.7 ± 6.1 4.0 ± 6.8 0.084
Cholesterol, mg 224.0 ± 286.6 a 170.1 ± 89.4 a 657.8 ± 125.1 b <0.001
Vitamin A, µg 1001.1 ± 615.1 1036.5 ± 605.8 1156.1 ± 569.4 0.501

Pantothenic acid, mg 5.0 ± 2.5 ab 4.2 ± 1.4 a 5.9 ± 1.5 b 0.001
Vitamin B6, mg 1.9 ± 0.8 1.7 ± 0.8 2.0 ± 1.3 0.377
Folic acid, µg 475.9 ± 270.7 385.4 ± 144.6 551.5 ± 667.2 0.298

Vitamin B12, µg 3.72 ± 2.7 ab 3.0 ± 1.8 a 4.8 ± 2.7 b 0.016
Vitamin C, mg 88.2 ± 63.1 75.8 ± 42.0 90.0 ± 62.5 0.440
Vitamin D, µg 4.2 ± 4.4 ab 3.1 ± 2.6 a 6.1 ± 2.7 b 0.006

Vitamin E, mg α-tocopherol 11.9 ± 8.7 10.5 ± 6.5 13.5 ± 7.0 0.239
Vitamin K, µg 107.8 ± 74.4 142.7 ± 81.2 141.7 ± 106.9 0.113
Calcium, mg 919.5 ± 471.8 795.9 ± 314.1 910.7 ± 355.4 0.293
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Table 2. Cont.

Daily Intake Totals Egg-Free Diet Egg White Diet Whole Egg Diet p-Value

Copper, mg 1.26 ± 0.65 1.12 ± 0.49 1.14 ± 0.59 0.216
Iron, mg 15.8 ± 8.0 12.0 ± 5.0 16.1 ± 14.1 0.204

Magnesium, mg 300.4 ± 140.2 260.0 ± 106.1 264.0 ± 125.0 0.075
Phosphorus, mg 1197.8 ± 510.9 ab 1042.8 ± 375.1 a 1304.5 ± 454.0 b 0.020

Selenium, µg 111.4 ± 61.3 a 117.4 ± 36.0 a 143.1 ± 43.8 b 0.017
Sodium, mg 3170.7 ± 1146.4 a 3387.0 ± 1238.6 ab 3862.5 ± 1328.8 b 0.032

Zinc, mg 10.4 ± 4.4 8.8 ± 3.8 11.1 ± 6.5 0.127
Choline, mg 289.5 ± 253.1 a 221.2 ± 78.4 a 614.1 ± 147.2 b <0.001
Betaine, mg 180.4 ± 150.5 126.9 ± 60.2 143.1 ± 80.3 0.155

Lutein + Zeaxanthin, µg 1425.1 ± 1007.2 a 2063.0 ± 1901.5 ab 2471.6 ± 2208.1 b 0.039

Data are reported as mean ± standard deviation, n = 26. Values with different letters (a, b, c) are significantly
different at p < 0.05.

3.2. Effect of Egg Intake on Body Composition and Clinical Metabolic Profiles

We next evaluated the effects of egg intake on body composition, measures of protein
and choline status, kidney and liver function, and inflammation—including the acute-phase
liver enzymes ALT, AST, and hsCRP (Table 3). Despite monitoring and dietary guidance to
ensure weight maintenance throughout the diet periods, body weight increased by 0.9%
on average during the egg white period as compared to the egg-free diet period, although
this did not equate to significant changes in fat, fat-free, or muscle mass. In contrast, while
body weight did not significantly differ between the egg-free and whole egg diet period,
fat mass was increased by 3.5% on average following the whole egg diet. In assessing
metabolic panels, we did not observe differences in markers of protein status, kidney and
liver function, inflammation, or ketone concentrations across diet periods. However, we
observed significantly higher concentrations of serum choline and the choline metabolite
betaine following the whole egg period, in line with increased dietary choline intake during
this intervention phase. Notably, serum concentrations of TMAO were not altered between
egg diet periods.

Table 3. Anthropometric and serum metabolic profiles following egg diet periods.

Egg-Free Diet Egg White Diet Whole Egg Diet p-Value

Body weight, kg 66.7 ± 12.1 a 67.3 ± 12.7 b 67.2 ± 12.7 ab 0.038
BMI, kg/m2 22.9 ± 2.8 23.0 ± 3.0 23.0 ± 3.0 0.054
Body fat, % 24.8 ± 7.1 25.5 ± 7.3 26.1 ± 7.7 0.189
Fat mass, g 36.9 ± 15.1 a 37.7 ± 15.9 ab 38.2 ± 16.2 b 0.020

Fat free mass, g 109.8 ± 20.1 110.3 ± 21.0 109.6 ± 20.3 0.241
Muscle mass, g 104.0 ± 19.5 104.5 ± 20.3 102.8 ± 20.7 0.142

Sodium, mmol/L 138.8 ± 1.6 139.2 ± 1.5 139.0 ± 1.8 0.623
Potassium, mmol/L 4.13 ± 0.24 4.11 ± 0.23 4.11 ± 0.26 0.913
Chloride, mmol/L 104.0 ± 1.8 104.7 ± 2.0 104.1 ± 1.8 0.248

Carbon dioxide, mmol/L 23.9 ± 3.0 23.9 ± 2.4 23.8 ± 2.5 0.977
Calcium, mg/dL 9.35 ± 0.29 9.32 ± 0.30 9.35 ± 0.24 0.921

BUN, mg/dL 12.7 ± 3.2 13.0 ± 3.0 12.9 ± 3.0 0.907
Protein, g/dL 0.807 ± 0.09 0.784 ± 0.13 0.78 ± 0.11 0.160

Albumin, g/dL 4.42 ± 0.30 4.43 ± 0.26 4.40 ± 0.23 0.735
Globulin, g/dL 2.41 ± 0.32 2.42 ± 0.33 2.52 ± 0.34 0.170

Albumin:Globulin 1.88 ± 0.33 1.86 ± 0.30 1.78 ± 0.25 0.190
Bilirubin, mg/dL 0.53 ± 0.25 0.55 ± 0.33 0.50 ± 0.2 0.681

ALP, U/L 55.9 ± 14.1 55.9 ± 17.0 54.5 ± 11.9 0.983
ALT, U/L 14.4 ± 6.1 13.0 ± 6.8 13.2 ± 5.1 0.453
AST, U/L 18.5 ± 5.5 17.9 ± 5.2 18.0 ± 4.5 0.751

hsCRP, mg/L 1.5 ± 1.9 1.7 ± 3.1 2.2 ± 3.8 0.629
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Table 3. Cont.

Egg-Free Diet Egg White Diet Whole Egg Diet p-Value

Total ketones, µmol/L 170.9 ± 105.3 167.2 ± 141.4 137.4 ± 54.6 0.468
BHB, µmol/L 173.7 ± 106.6 170.1 ± 143.7 138.6 ± 55.4 0.462

Acetoacetate, µmol/L 39.8 ± 21.7 40.4 ± 29.6 38.0 ± 16.0 0.934
Acetone, µmol/L 36.3 ± 16.3 34.3 ± 15.5 31.5 ± 11.8 0.482

Choline, µM 8.8 ± 2.8 a 9.6 ± 2.3 ab 10.6 ± 2.6 b 0.025
Betaine, µM 32.4 ± 10.4 a 31.6 ± 10.9 a 36.6 ± 13.4 b <0.001
TMAO, µM 2.1 ± 1.5 4.0 ± 6.4 1.6 ± 0.9 0.092

Data are reported as mean ± standard deviation, n = 23–26. Values with different letters (a, b) are significantly
different at p < 0.05. ALP: alkaline phosphatase; ALT: alanine aminotransferase; AST: aspartate aminotransferase;
BHB: beta-hydroxybutyrate; BMI: body mass index; BUN: blood urea nitrogen; TMAO: trimethylamine N-oxide.

3.3. Effects of Egg Intake on Serum Lipid Profiles

We next evaluated the effects of egg intake on serum lipid profiles. While there
was notable variability across individuals, changes in fasting total cholesterol, LDL-C,
HDL-C, non-HDL-C, triglycerides, or the total cholesterol:HDL-C ratio did not reach
statistical significance (Figure 2A–F), with no differences observed between male and female
participants. Interestingly, in conducting a subgroup analysis of female participants, we
observed that variability in serum lipid responses to egg diets may in part be attributable to
the use of combined oral contraceptives (COCs). Notably, changes in total cholesterol:HDL-
C ratio between the egg white and whole diet periods were significantly decreased in COC
users as compared to non-users (Figure 2G). This effect appeared to be primarily driven by
changes in HDL-C between COC users vs. non-users, although differences did not reach
statistical significance (Figure 2H).

3.4. Effects of Egg Intake on Lipoprotein Particle Profiles

Despite observing only minimal effects of egg intake on serum lipids—and only
in female participants based on COC use—we further evaluated whether the intake of
different egg diets impacted lipoprotein particle profiles. Overall, we did not observe
changes in average TRLP, LDL, or HDL particle size; serum concentrations of total TRLP,
LDL, or HDL particles; apoB or HDL-associated apoA-1; and size subclasses of TRLP, LDL,
and total large, medium, and small HDL (Table S3). However, we observed that HDL
H6P (10.8 nm)—a subclass of large HDL—was increased following the whole egg diet
as compared to the egg-free and egg white diet periods (p < 0.05; Figure 3A). Similar to
differences in total cholesterol:HDL-C in response to egg intake observed between female
COC users vs. non-users, we observed a trend toward greater increases in large LDL
concentrations following the whole egg diet period in non-users (Figure 3B).

3.5. Effects of Egg Intake on Markers of Insulin Sensitivity

We next evaluated the effects of egg intake on fasting glucose and markers of insulin
resistance, given that some epidemiological studies have reported associations between
egg intake and type 2 diabetes mellitus risk, although these findings are not consistent
across studies [15,42–45]. In line with previous intervention studies [10,23,46], we did
not observe changes in fasting glucose across diet periods (Table 4. Further, we did not
observe changes in glycA—a measure of protein levels and glycosylation states of several
of the most abundant acute-phase proteins in serum [39]. Given recent reports that serum
amino acid levels have predictive potential in evaluating T2DM risk [24,25], we next
evaluated whether intake of different egg-based diets altered serum amino acid profiles.
Interestingly, we observed that serum isoleucine was increased in the egg white and whole
egg diet periods as compared to the egg-free diet period, whereas serum glycine was
increased following the whole egg diet only. While serum concentrations of branched-
chain aminos are positively correlated with insulin resistance [24], glycine, a conditionally
essential amino acid, circulates at a lower level in T2DM patients as compared to healthy
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controls [25], suggesting a greater potential protective effect of whole eggs against T2DM
as compared to egg whites. Despite these differences, no changes in lipoprotein insulin
resistance index (LP–IR) or diabetes risk index (DRI)—which take into account lipoprotein
profiles and serum amino acid concentrations to characterize insulin resistance and T2DM
risk [47,48]—were observed across diet periods.
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Figure 2. Serum lipid responses to egg intake are altered in females based on used of combined
oral contraceptives. Intake of an egg-free diet (light blue), egg whites (purple), or whole eggs
(dark blue) did not alter serum (A) total cholesterol, (B) LDL-C, (C) non-HDL-C, (D) triglycerides,
(E) total cholesterol:HDL-C ratio, or (F) HDL-C in young healthy men and women (n = 26). In female
participants, changes in the total cholesterol:HDL-C ratio (G) and (H) HDL-C between the egg white
and whole diet periods were evaluated in COC users (teal bar, n = 11) as compared to non-users (gray
bar, n = 10). * p < 0.05, NS: non-significant.
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Figure 3. Effects of egg intake on serum lipoprotein profiles. Intake of an egg-free diet (light blue),
egg whites (purple), or whole eggs (dark blue) on (A) HDL particle subclasses (n = 25); (B) changes
in large LDL concentrations between the egg white and whole diet periods in female COC users
(teal bar, n = 11) as compared to non-users (gray bar, n = 9). * p < 0.05. Different letters (a, b) denote
statistically significant comparisons.
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Table 4. Serum insulin sensitivity markers following egg diet periods.

Egg-Free Diet Egg White Diet Whole Egg Diet p-Value

Glucose, mg/dL 81.6 ± 9.6 82.5 ± 9.4 83.5 ± 9.4 0.423
GlycA, µmol/L 380.2 ± 75.1 367.1 ± 44.7 386.9 ± 79.7 0.333

LP–IR risk index, 0–100 34.1 ± 16.6 33.4 ± 15.9 31.4 ± 13.6 0.701
DRI, 0–100 32.7 ± 11.7 32.8 ± 10.3 33.4 ± 10.1 0.947

Total BCAA, µmol/L 361.9 ± 44.1 376.1 ± 50.8 384.1 ± 46.5 0.079
Leucine, µmol/L 123.4 ± 20.0 120.9 ± 24.8 126.4 ± 19.0 0.612

Isoleucine, µmol/L 50.4 ± 10.6 a 56.9 ± 9.5 b 58.4 ± 11.1 b 0.001
Valine, µmol/L 188.0 ± 28.5 198.3 ± 31.5 199.2 ± 30.6 0.133

Alanine, µmol/L 363.4 ± 98.0 365.5 ± 83.0 378.7 ± 65.9 0.608
Glycine, µmol/L 202.9 ± 53.2 a 196.0 ± 47.7 a 219.2 ± 61.2 b 0.004
Citrate, µmol/L 86.0 ± 24.4 87.6 ± 24.9 81.3 ± 19.2 0.408

Data are reported as mean ± standard deviation, n = 25–26. Values with different letters (a, b) are significantly
different at p < 0.05. BCAA: branched-chain amino acids; DRI: diabetes risk index; LP–IR: lipoprotein insulin
resistance risk index.

3.6. Effects of Egg Intake on Clinical Immune Profiles

Previous studies have reported changes in systemic inflammatory markers and periph-
eral blood mononuclear cell inflammatory responsiveness following egg intake [11,30,49];
however, the effects of egg intake on clinical immune profiles are less well-characterized. In
this current study, we did not observe statistically significant changes in total white blood
cell or differential leukocyte counts between egg diet periods, nor did we observe changes
in the percent distribution of leukocyte subsets, although notable variability in responses
was observed (Table S4). We further evaluated the effects of egg intake on clinical leuko-
cyte ratios that have prognostic potential in chronic inflammatory conditions, including
neutrophil:lymphocyte and lymphocyte:monocyte ratios [40,50,51]; however, these metrics
did not change over the course of the intervention. Given that serum lipid responses to
diet differed in female participants with COC use, we further evaluated whether COC use
dictated the effects of egg intake on clinical immune markers. While changes in total WBC
and neutrophil counts between the egg white and whole egg diet periods with COC use
did not reach statistical significance, we observed that changes in % monocytes between
egg white and whole egg periods were significantly reduced in COC users as compared to
non-users (Figure 4).
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Figure 4. Effects of egg intake on clinical immune profiles with COC use. Changes (A) total WBC;
(B) absolute neutrophils; and (C) % monocytes between the egg white and whole diet periods in
female COC users (teal bar, n = 10) as compared to non-users (gray bar, n = 7). * p < 0.05, NS:
non-significant.

3.7. Effects of Egg Intake on Clinical Erythrocyte and Platelet Profiles

In addition to evaluating the effects of egg intake on immune profiles, we further assessed
whether intake of different egg-based diets altered erythrocyte markers—particularly given
the changes in reported dietary intake of hematopoietic nutrients throughout the intervention.



Nutrients 2023, 15, 3747 12 of 24

While changes in total red blood cell counts did not reach statistical significance, hemat-
ocrit increased following the whole egg diet as compared to the egg-free diet (Figure 5A,C).
Conversely, no changes in hemoglobin, mean corpuscular volume, or mean corpuscular
hemoglobin concentrations were observed between diet periods (Figure 5B,D,E). Interest-
ingly, platelets decreased following both the egg white and whole egg diet period as
compared to the egg-free diet period (Figure 5F). The effects of egg intake on erythrocyte
and platelet measures did not differ in female participants with COC use—despite previous
reports that COC use has been associated with higher hemoglobin and red blood cell and
platelet counts [37].

3.8. Egg-Induced Changes in Lipoprotein and Glucose Sensitivity Measures Differentially Correlate
with Changes in Immune Cell Subset Counts

Beyond the potential direct role of egg-derived nutrients on metabolic and hematologic
outcome measures, we hypothesized that variable changes in immune and erythrocyte
parameters across participants may additionally be a result of improved metabolic profiles—
specifically the changes in the concentration of large HDL particles, as HDL has been shown
to influence immune cell activation, differentiation, and erythrocyte lifespan [52–55]. In
conducting statistical correlation analysis, we found that changes in specific serum lipid
and lipoprotein subclasses differentially correlated with changes in total white blood cell,
neutrophil, lymphocyte, and monocyte counts between egg white and whole egg diet
periods (Figure 6). Notably, the greatest number of correlations were observed between
HDL and immune measures, as compared to other serum lipid and lipoprotein fractions.
Overall, changes in HDL measures negatively correlated with immune cell counts with the
exception of medium HDL and with changes in the concentration of total HDL particles
having the strongest overall relationship across immune cell types. Further, changes in
fasting serum triglycerides, very large TRLP, glucose, and LP–IR were positively correlated
with changes in different immune cell counts.
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Figure 5. Effects of egg intake on clinical erythrocyte and platelet profiles. Intake of an egg-free diet
(light blue), egg whites (purple), or whole eggs (dark blue) on (A) total red blood cells; (B) hemoglobin;
(C) hematocrit; (D) mean corpuscular volume; (E) mean corpuscular hemoglobin concentrations;
and (F) total platelets (n = 23). Different letters (a, b) denote statistically significant comparisons.
* p < 0.05, NS: non-significant.
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Figure 6. Correlations between changes in metabolic vs. immune parameters. Heatmap values are
Pearson correlation coefficients, where red indicates a positive correlation and green indicates a nega-
tive correlation. Asterisks denotes statistically significant correlations (* p < 0.05, ** p < 0.01). HDL-P:
HDL-particle, LP–IR: lipoprotein–insulin resistance index, TC: total cholesterol, TG: triglycerides,
TRLP: triglyceride-rich lipoproteins, WBC: white blood cells.

4. Discussion

Eggs are a rich source of bioactive nutrients and dietary compounds that possess prop-
erties that may contribute to the regulation of metabolic health, lipid metabolism, immune
function, and hematopoiesis [1–3]. However, the effects of egg intake on biomarkers related
to these health parameters are often inconsistent and evaluated in isolation, making it
difficult to evaluate the comprehensive effects of egg intake on standard, routine clinical
parameters that are more likely to influence a healthcare provider’s dietary recommenda-
tions [1,45]. In this study, we observed that intake of an egg-free diet, 3 egg whites per
day, and 3 whole eggs per day altered the global dietary nutrient composition, with whole
eggs leading to greater overall improvements in micronutrient diet quality. Further, whole
egg consumption improved choline status and HDL, immune, and hematologic profiles
while minimally—yet potentially less adversely—affecting markers of insulin resistance as
compared to egg whites. Importantly, the use of COC by female participants altered the
serum lipid and immune responses to egg diets, and correlation analysis suggests that egg-
induced changes in HDL and insulin resistance markers correlated with changes in immune
parameters while correlations between other metabolic and hematologic markers were not
observed. Together, these findings suggest that, despite increases in body fat mass and
certain nutrients associated with chronic disease pathophysiology [56,57], whole egg intake
may confer greater global metabolic and hematologic benefits compared to egg-free and
egg white diets, although effects may differ based on the use of hormone-based medication.

Despite being a relatively rich dietary source of cholesterol, whole egg consumption
has been positively associated with greater overall diet quality, including greater daily
intake of high-quality protein, polyunsaturated and monosaturated fat, α-linolenic acid,
docosahexaenoic acid (DHA), vitamin D, potassium, phosphorus, selenium, choline, and
the carotenoids lutein and zeaxanthin—the majority of which are provided by the egg
yolk [2,4,8,58]. Similar dietary patterns were observed in our study, with greater enrichment
of many of these nutrients during the whole egg period. Beyond the intake of egg yolk
nutrients, egg consumers tend to incorporate more total protein foods, seafoods, total
vegetables, whole fruits, whole grains, and dairy foods, leading to healthier whole food
patterns [8,58]. Besides the benefit of greater diet quality, egg consumers reported higher
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postprandial satiety and suppressed ghrelin responses [23,59,60] as well as decreased intake
of total and added sugar compared to non-egg consumers [58,61]. These findings are in
line with the results from our study, in which the percent of kilocalories coming from
carbohydrates was reduced in the whole egg diet period as compared to the egg-free and
egg white diet periods while total energy intake across diet periods did not differ. It is
important to note that the intake of various nutrients associated with cardiometabolic
disease were increased by whole egg intake, including total fat, arachidonic acid, and
sodium [56,57,62]. However, a greater intake of these nutrients did not correspond to
adverse changes in cardiometabolic or hematologic profiles—despite minor changes in
body composition.

Reports on the effects of egg intake on body weight and composition yield conflicting
results from epidemiological and intervention studies. In a cross-sectional study by Garrido-
Miguel et al. [26], consumption of ≥5 eggs/week was associated with lower BMI and
body fat percentage compared to participants consuming <1 egg/week in a young adult
population (age 18–30 years old), suggesting that greater egg consumption may promote
a healthier body composition, which is in line with studies finding that eggs increase
satiety and improve diet quality [8,23,58–60]. Interestingly, reductions of body weight
following dried whole egg intake has also been observed in diabetic and diet-induced
obesity rat models [63,64]. Population-based and observational studies have also reported
conflicting sex-specific differences in the effects of egg intake on body composition, with
consumption of >50 g egg/day being associated with reduced risk of central obesity and
body fat in females only in a study of 2241 Chinese adults (age 18–80 y) [65], whereas
stronger protective associations between egg intake and reduced risk of being classified as
metabolically unhealthily obese were observed in males [66]. In contrast, Shim and Seo [27]
observed that an intake of 2–3 eggs/week and 4–6 eggs/week based on food frequency
questionnaire responses were associated with higher body fat mass in males and females,
respectively, in 13,366 adults from the Korea National Health and Nutrition Examination
Surveys 2008–2011. Variability in results across studies may be attributable to differences in
study population characteristics (including age, sex, and health status), background dietary
patterns, methods for assessing diet and body composition, and criteria for classifying
high vs. low egg intake. Further, these results often do not translate to those observed in
randomized, controlled intervention studies, in which an intake of 1–3 eggs/day has not
been associated with changes in body weight or composition in healthy adults [19]. In our
study, we observed a 0.9% increase in body weight and a 3.5% increase in fat mass in the
egg white and whole egg diet period, respectively, as compared to the egg-free diet period,
with no differences between males and females. However, it is unclear if these results are
physiologically significant given a lack and/or improvement in metabolic profiles from
whole egg intake, or whether these changes are artifacts or coincidental natural fluctuations
in weight that would persist long-term. Additional intervention studies are warranted to
elucidate whether certain dietary patterns or metabolic profiles are determinants of body
composition change from egg intake.

In line with increased dietary choline intake observed during the whole egg pe-
riod, serum concentrations of choline and the choline metabolite betaine were higher
following the whole egg diet period, which is consistent with previous egg intervention
studies [49,67]. Egg yolks serve as a rich source of choline (~125 mg per large egg), which
is an essential component of cell membrane phospholipids, a precursor to the neurotrans-
mitter acetylcholine; regulates one-carbon metabolism and homocysteine levels through
the formation of betaine; and supports neural tube and brain development and cognitive
function in early life [2,4,68]. Betaine has also been shown to possess anti-inflammatory
activities through inhibition of nuclear factor-κB activity, NLRP3 inflammasome activa-
tion, and mitigation of endoplasmic reticulum stress [69]. Further, choline provided by
egg yolk has been shown to be more bioavailable and efficiently absorbed compared to
a choline bitartrate supplemented beverage [68]. Incorporating bioavailable sources of
choline into the diet is essential, as choline intake by pregnant women, children, and adult
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men and women often fall far below Adequate Intake (AI) levels [70]. Through the analysis
of >25,000 participants in the National Health and Nutrition Examination Survey 2005–2014
datasets, Wallace and Fulgoni [71] reported that egg consumers were found to have a higher
intake of choline compared to non-egg consumers and concluded that the ability of individ-
uals to meet the AI for choline is extremely difficult unless they consume eggs or a dietary
supplement that provides choline. With the AI for men and women age 19+ being 550 mg
and 425 mg/day, respectively [72], our study participants only met the daily AI for choline
during the whole egg diet period on average (614.1 mg/day), whereas the average daily
intake of choline during the egg-free (289.5 mg/day) and egg white (221.2 mg/day) diet
periods fell below the AI. Importantly, we did not observe changes in serum TMAO—a
proatherogenic choline metabolite produced by intestinal microbiota, which early studies
linked to be increased by egg intake [18,73]. However, numerous intervention studies have
since demonstrated that the intake of up to three whole eggs/day does not increase plasma
TMAO in young healthy subjects [19,74,75], overweight postmenopausal women [67], or
subjects with metabolic syndrome [76], which is consistent with our observations. Together,
these findings suggest that whole intake supports improvements in choline status without
adversely impacting choline-derived CVD risk factors.

The lack of effect of our study intervention on serum lipids and apoB-containing
lipoprotein size profiles similarly suggests that cardiovascular disease biomarkers and
risk are not adversely impacted by whole egg intake [77,78]. In contrast, the increase
in HDL H6P—a subclass of large HDL—following the whole egg period is indicative of
reduced CVD risk in population-based studies [3,79,80]. These findings are consistent with
egg intervention studies conducted in young and older healthy adults as well as adults
classified as overweight, with metabolic syndrome, and type 2 diabetes, with many studies
additionally reporting increases in HDL-C [10,19,46,81–83]. The effects of whole egg intake
on HDL parameters may in part be attributable to yolk-derived phospholipids, given that
dietary phospholipid feeding has been shown to increase HDL-C in human and animal
studies and that dietary phosphatidylcholine—the predominant phospholipid egg yolk—is
preferentially incorporated into HDL particles following ingestion [84]. Egg intake has
additionally been shown to increase lecithin cholesterol acyltransferase (LCAT) activity,
which facilitates the esterification of free cholesterol to cholesteryl esters and promotes
HDL maturation, stabilization, and increased particle size [10,19]. More recent studies have
indicated diverse functions depending on HDL particle size; for instance, large particles
have shown stronger antioxidant function [85,86] and were positively associated with HDL
efflux capacity in 402 participants from the Chicago Healthy Aging Study [87]. Further re-
search is warranted to evaluate the mechanisms by which egg intake modulates serum lipid
and HDL profiles across individuals with varied and seemingly similar health phenotypes.

To explore potential factors that could influence the serum lipoprotein response to egg
intake, we evaluated differences in serum lipid and lipoprotein profile changes in female
subjects who were taking COCs vs. those who were not. Previous studies have shown
mostly negative associations between COC use and serum lipid profiles; more specifically,
various studies have shown that COC use is associated with significant increases in TC,
LDL-C, and a reduction in HDL-C and the HDL-C/LDL-C ratio [34–36]. While COC
use alters blood lipids, Momeni et al. [88] reported neutral effects on plasma levels of
homocysteine and nitric oxide plasma levels in healthy young women. In our study, we
observed greater increases in total cholesterol:HDL-C ratios in female subjects not using
COCs as compared to COC users as well as trends toward decreases in HDL-C and increases
in large LDL concentrations. In epidemiological studies, a shift from large LDL to greater
concentrations of medium and small LDL particles has been associated with increased risk
of CVD and coronary heart disease [89]. While these changes observed in our study did not
reach statistical significance, it highlights an important consideration for conducting dietary
intervention studies, particularly given that 19.5% of women age 15–19, 21.6% of women
age 20–29, and 10.9% of women age 30–39 use COC [90]. Further research is warranted
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to determine whether COC and other hormone-based therapies influence physiological
response to diet in intervention settings.

In addition to evaluating traditional cardiovascular disease risk factors, we evaluated
the effects of egg intake on standard and emerging clinical biomarkers of insulin resistance.
Epidemiological studies have reported conflicting results on the association between egg
intake, markers of glucose control, and type 2 diabetes risk, with some studies reporting
that higher daily intake of eggs is positively associated with higher blood glucose and
greater risk of type 2 diabetes [15,91], whereas others have found that egg consumption is
associated with lower risk of type 2 diabetes in middle-aged and old men in Korea [22]. In
intervention trials, whole egg intake has not been shown to have neutral or beneficial effects
on fasting glucose levels or insulin resistance markers (e.g., plasma insulin, HOMA-IR) in
young healthy adults, subjects with metabolic syndrome, or type 2 diabetes [10,19,23,46].
Similarly, we did not observe changes in fasting glucose across egg diets in our study,
nor did we observe changes in glycA—a measure of protein levels and glycosylation
states of several of the most abundant acute-phase proteins in serum [39]. Interestingly,
however, we observed that serum isoleucine was elevated in the egg white and whole
egg diet periods as compared to the egg-free diet period, whereas serum glycine was
elevated only following the whole egg diet. Reduced gene expression involved in branched-
chain amino acid metabolism is one of the characteristics of type 2 diabetes [92]; thus,
serum concentrations of branched-chain aminos are positively correlated with insulin
resistance [24,25]. In contrast, serum glycine was found to be low in patients with obesity
and diabetes [93,94], and an improvement of diabetes is positively associated with higher
serum glycine level [95]. Our findings suggest that, perhaps, components of egg whites
may be contributing to the positive associations between egg intake and insulin resistance,
whereas components of egg yolk may counteract or balance these effects. A potential
mechanism by which egg yolks can increase glycine concentrations is through the provision
of choline, which is metabolized to betaine (or trimethylglycine) and ultimately glycine [25],
which would correspond to our observations that serum choline and betaine were increased
by whole egg intake.

We further evaluated the effects of egg intake on clinical immune profiles, for which
there are limited studies, and serum inflammatory markers, for which studies have re-
ported conflicting results [1,96]. In healthy individuals, whole egg intake has variable
effects in serum inflammatory markers, including serum amyloid A and hsCRP, with stud-
ies reporting both pro-inflammatory and anti-inflammatory effects of egg intake [11,97–99].
However, reduction in plasma inflammatory markers from whole egg intake is more
commonly observed in populations characterized by metabolic dysfunction and chronic
low-grade inflammation (e.g., metabolic syndrome, overweight) [11,49,98]. While yolks pro-
vide a variety of nutrients with anti-inflammatory properties, a study by Dibella et al. [49]
demonstrated that whole egg intake and choline bitartrate supplementation both decreased
IL-6, whereas only whole eggs reduced hsCRP, suggesting that the choline content of whole
eggs is in part attributable to their anti-inflammatory effects. Despite increasing serum
concentrations of choline, whole egg intake did not significantly alter hsCRP, ALT, or AST
in our study population, suggesting that further research is needed to identify participant
characteristics or other determinants of the variable inflammatory responses to egg intake.

In addition to serum inflammatory markers, total white blood cell counts and differen-
tial immune subset counts can serve as important indicators of immune activation, function,
and competence within the context of pathogen defense, infection, cancer, and autoimmu-
nity [100–102]. Studies have shown that various clinical leukocyte parameters, including
total white blood cells counts, absolute neutrophils and monocytes, and the ratio of neu-
trophils:lymphocytes and lymphocytes:monocytes are indicators of systemic inflammation
and are positively associated with chronic metabolic diseases, such as metabolic syndrome
and CVD [102–104]. In preclinical studies, whole egg and its lipid constituents have been
shown to improve humoral immune status and restore T cell responsiveness, highlighting a
potential modulatory role of egg intake in pathogen defense and clearance [32,33]. In clini-
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cal trials, egg intake has additionally been shown to reduce anti-inflammatory T regulatory
and pro-inflammatory Th17 T cell counts, alter cytokine secretion from LPS-stimulated pe-
ripheral blood mononuclear cells, and improve clearance of active pulmonary tuberculosis
from sputum cultures as part of a cholesterol-rich diet [30,31,99]. Consistent with the lack
of effect on serum inflammatory markers, we did not observe changes in clinical immune
parameters across diet periods in the study population as a whole, although whether our
intervention induced changes in specific leukocyte subsets (e.g., Treg vs. Th17) and inflam-
matory responsiveness to stimuli that cannot be detected by measurement of traditional,
clinical immune profiling warrants further study. Notably, in categorizing female subjects
by COC use, we observed greater increases in % monocytes from the egg-free to egg white
diet periods as compared to changes in % monocytes from the egg-free to whole egg
diet periods, whereas changes in total WBC, absolute neutrophils, or other inflammatory
markers did not reach statistical significance. Previous studies have shown that COC use
is associated with an increase in inflammatory blood biomarkers including CRP, MCP-1,
and pro-inflammatory cytokines, such as TNF and IL-6 [105,106]. More recently, a 2022
review by Tekle et al. [37] highlighted that, compared to non-users, COC users did not
have significantly altered leukocyte counts across multiple studies. However, this review
was a narrative review and, therefore, did not show the pooled effect of oral contraceptives
on these parameters. While higher absolute monocyte counts have been associated with
increased CVD risk [107], the clinical significance of changes in % monocytes is unclear. A
limitation of our COC subgroup analyses is the small sample size; therefore, further studies
are needed to evaluate the impact of COC use on diet-mediated changes in immune and
inflammatory parameters.

Interestingly, we additionally observed correlations between changes in clinical im-
mune cell subset counts and metabolic parameters, with the majority of associations
observed with HDL parameters. We have previously demonstrated that HDL-C predicts
clinical immune cell counts, where increases in HDL-C were associated with lower lympho-
cyte and monocyte counts in men and women, as well as lower neutrophil, eosinophil, and
basophil counts in men [100]. These findings are consistent with our data, where changes
in HDL-C, total HDL particles, and large and small HDL particle subsets negatively corre-
lated with changes in clinical immune counts. HDL is an important modulator of immune
cell activity, through modulation of lipid rafts and subsequent inflammation and cellular
expansion in response to stimuli, carrying proteins with immunomodulatory properties,
and by influencing cellular energy metabolism [53,108–111]. Accordingly, HDL profiles
and its proteomic composition are modified and show therapeutic potential in acute and
chronic inflammatory conditions such as CVD, autoimmune disorders, COVID-19, and
sepsis [109,112]. Thus, further characterization of the immunomodulatory properties of
HDL in response to egg intake is warranted. Conversely, we observed positive correla-
tions between changes in clinical immune cell counts and metabolic parameters associated
with chronic inflammatory disease risk, including serum triglycerides, triglyceride-rich
lipoproteins, glucose, and LP–IR, suggesting that individuals who experienced increases in
these metabolic parameters following whole egg intake were more likely to reflect immune
profiles indicative of greater immune inflammation.

In addition to clinical leukocyte profiles, we examined the effects of egg intake on
(1) erythrocyte markers, which serve as important indicators of anemia, inflammation,
and nutritional status, and (2) platelets, which are essential for blood clotting and can
serve as a marker of inflammation, as well as predictors of CVD and cancer risk [113–115].
Eggs contain various nutrients that support hematopoiesis and red blood cell profiles,
including protein; vitamins A, D, and E; B vitamins; iron; calcium; manganese; magnesium;
sodium and potassium; iodine; phosphorus; selenium; copper; zinc; and choline—many
of which are contained in the egg yolk [4,5,116,117], which could explain the increase in
hematocrit levels observed following the whole egg diet period. However, the effects of
egg consumption on erythrocyte profiles and iron status—the most common nutritional
cause of anemia and routine clinical indicators of red blood cell health [118]—remains
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somewhat controversial. Negative effects of egg intake on erythrocyte and iron status
markers have been in part attributed to decreased iron bioavailability and limited effects
on ferritin, which is responsible for iron-storage [118–120]. The effects of egg intake on iron
status may be dependent on the fraction of eggs consumed, as yolk iron is predominantly
contained within phosvitin, which is relatively resistant to digestion, thereby decreasing
iron bioavailability [121,122], whereas iron contained within egg white-derived ovalbumin
may promote non-heme iron absorption [122]. Egg consumption (whole or powdered)
has been associated with reduced iron absorption—estimated by Hallberg and Hulthen
to be ~27% for 3 eggs consumed [119], using an algorithm developed from observations
from early feeding studies. While Leonard et al. [123] found that egg intake was weakly
associated with lower serum ferritin (Spearman’s r = −0.28) in a cross-sectional study of
107 Australian women, additional recent studies have found no detrimental relationship
between egg intake and iron status [124,125]. Six months of daily egg intake similarly did
not alter iron or anemia status in young Malawian children [126]. In contrast, Little et al. [16]
found that egg consumption was significantly correlated with reduced possibilities of mild
anemia compared to subjects with no anemia, but no correlations were found in moderate
and severe anemia subjects. For studies reporting improvements in erythrocyte profiles
and iron status from whole egg intake such as ours, it is important to consider the role
of choline given that serum choline levels were increased following the whole egg diet
and choline deficiency in animals is associated with anemia [127]. Choline is also found
to induce changes on red blood cell membrane properties, such as increasing membrane
lipid fluidity [128], which might indirectly influence erythrocyte profiles. Further research
is warranted to determine whether individual variability, overall nutritional quality of
the diet, or nutrient composition/size of egg yolk and egg white fractions underlies the
variable effects of egg intake on erythrocyte profiles.

We additionally observed a reduction in platelet counts following the egg white and
whole egg period compared to the egg-free period. Various nutrients and dietary patterns
additionally influence platelet parameters, where Mediterranean-style, plant-based, and
omega-3- and antioxidant polyphenol-rich diet patterns and foods are associated with
platelet marker benefits [129]. Interestingly, in a cohort study of 21,252 adults (≥20 years)
from the Danish General Suburban Population Study (GESUS), Vinholt et al. [115] reported
a U-shaped curve between mortality and platelet counts, with higher platelet counts within
the normal range (100–450 × 109/L) being associated with an increased risk of cardiovascu-
lar disease and increased risk of mortality with platelet counts over >300 × 109/L. While
average and individual platelet counts were within the normal range following each diet
period, the reduction of platelet counts following the egg white and whole egg period rela-
tive to the egg white period—including participants with platelet counts >300 × 109/L—is
perhaps indicative of improved chronic disease risk [115].

5. Conclusions

In summary, we evaluated the effects of consuming different egg-based diets on
comprehensive clinical parameters. Overall, the intake of whole eggs improved the nutrient
density of the diet in various aspects while additionally improving choline status, HDL
profiles, blood amino acid profiles indicative of T2DM risk (relative to egg white intake),
hematocrit, and platelet counts. Our study additionally highlights unique lipid and immune
responses to egg diets in females based on use of COC—a factor that is important to consider
in diet intervention trials. Importantly, we observed strong associations between egg
diet-induced changes in immune and HDL profiles, which warrant further investigation.
Together, these findings suggest that, in a young healthy population, whole egg intake
confers mostly beneficial changes in global clinical profiles.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nu15173747/s1, Table S1: Baseline characteristics of study participants;
Table S2: Dietary intake of food groups across diet periods; Table S3: Serum lipoprotein profiles
following egg diet periods; Table S4: Clinical immune profiles following egg diet periods.
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