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Abstract: Observational studies have investigated the impact of calcium homeostasis on psychiatric
disorders; however, the causality of associations is yet to be established. Bidirectional Mendelian
randomization (MR) analysis of calcium homeostasis hormones was conducted on nine psychiatric
disorders. Calcium, serum 25-hydroxyvitamin D levels (25OHD), parathyroid hormone, and fibrob-
last growth factor 23 are the major calcium homeostasis hormones. The causality was evaluated by
the inverse variance weighted method (IVW) and the MR Steiger test, while Cochran’s Q test, the
MR-Egger intercept test, funnel plot, and the leave-one-out method were used for sensitivity analyses.
Bonferroni correction was used to determine the causative association features (p < 6.94 × 10−4).
Schizophrenia (SCZ) was significantly associated with decreased 25OHD concentrations with an esti-
mated effect of −0.0164 (Prandom-effect IVW = 2.39 × 10−7). In the Multivariable MR (MVMR) analysis
adjusting for potentially confounding traits including body mass index, obesity, mineral supplements
(calcium, fish oil, and vitamin D) and outdoor time (winter and summer), the relationship between
SCZ and 25OHD remained. The genetically predicted autism spectrum disorder and bipolar disorder
were also nominally associated with decreased 25OHD. This study provided evidence for a causal
effect of psychiatric disorders on calcium homeostasis. The clinical monitoring of 25OHD levels in
patients with psychiatric disorders is beneficial.

Keywords: serum 25-hydroxyvitamin D levels; psychiatric disorders; schizophrenia; Mendelian
randomization study

1. Introduction

Calcium and vitamin D play important roles in human health [1,2]. The effects of
parathyroid hormone (PTH) include raising blood calcium levels, encouraging calcium ab-
sorption in the intestine with vitamin D, and reducing calcium excretion in the kidneys [3].
25-hydroxyvitamin D (25OHD) is an indicator of vitamin D status, which is further con-
verted in the kidneys to the active-form 1,25-dihydroxyvitamin D [4]. In the kidney, PTH
stimulates, whereas fibroblast growth factor 23 (FGF23) represses 25OHD-1α-hydroxylation.
FGF23 represses the activity of 25OHD-1α-hydroxylase, resulting in a decrease in the syn-
thesis of 1,25-dihydroxyvitamin D [5]. FGF23 regulates the urinary calcium excretion and
absorption of phosphate ions by the renal tubules [3,5]. In the distal convoluted tubule,
FGF23 facilitates calcium reabsorption through the FGFR-Klotho complex [5]. These regu-
latory hormones interact closely to regulate calcium absorption, transport, and excretion.

Nutrients 2023, 15, 4051. https://doi.org/10.3390/nu15184051 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu15184051
https://doi.org/10.3390/nu15184051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-1257-5373
https://doi.org/10.3390/nu15184051
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu15184051?type=check_update&version=1


Nutrients 2023, 15, 4051 2 of 14

Psychiatric disorder is one of the major public health challenges worldwide, ranking
as the second most significant cause of premature death and disability [6]. Psychiatric disor-
ders, due to their high prevalence, are the major causes of significant economic burden [7].
The pathophysiological mechanisms of psychiatric disorders are multifaceted [8]. Vitamin
D and its metabolizing enzymes are expressed in various cerebral structures, and their
deficiency has been linked to the development of psychiatric diseases [9]. In the obser-
vational analysis, higher concentrations of 25OHD were associated with a reduced risk
of depression [10]. According to a prospective cohort study of the general population, a
reduction in plasma 25OHD levels was linked to an increased risk for Alzheimer’s disease
(AD) and vascular dementia [11]. Previous studies have found that low prenatal vitamin D
levels may increase the risk of attention-deficit hyperactivity disorder (ADHD) or autism
spectrum disorder (ASD) in offspring [12,13]. A meta-analysis of 19 studies has shown that
individuals diagnosed with schizophrenia (SCZ) exhibited lower levels of serum vitamin D
compared to the control group [14]. Children with ASD exhibit significantly lower vitamin
D levels than their non-ASD siblings according to a study analyzing 25OHD in born sibling
pairs [15]. Vitamin D supplementation reduces depressive symptoms and decreases the risk
of developing psychotic-like symptoms, suggesting a potential therapeutic benefit for pa-
tients with psychiatric disorders [16–18]. However, the findings are not entirely consistent.
Previously, a meta-analysis failed to find evidence supporting the improvement of depres-
sive symptoms in adults through vitamin D supplementation [19]. Many observational
studies have shown that low vitamin D status is common in individuals with ASD, SCZ
or ADHD, and vitamin D supplementation improves the symptoms [20–22]. A previous
meta-analysis demonstrated the beneficial impact of vitamin D supplements on ADHD [23].
In contrast, another study reported no significant effects of vitamin D supplementation on
core symptoms of ASD [24]. A recent study revealed that after adjusting for age and years
of education, there was an inverse association between FGF23 levels in cerebrospinal fluid
and impulsivity scores [25]. In addition, some studies have found increased levels of FGF23
in individuals with postpartum depression, alcoholics, and patients with episodic sleep
disorders [26–28]. However, whether the observed association is causal is still unknown.

Mendelian randomization (MR) uses genetic variants as instrumental variables to
establish causality in exposure–outcome associations while avoiding reverse causality [29].
MR is more appropriate to detect the long-term causal effects of exposure on outcomes
due to its utilization of naturally occurring genetic variation as instrumental variables,
which are randomly allocated during conception and have lifelong effects [29]. Multivari-
able MR (MVMR) is an extension of MR that is used to assess whether the associations
remain after controlling for potential confounders [30]. In comparison to observational
studies, MVMR enables the determination of causal relationships by minimizing biases
caused by confounding factors. We performed a bidirectional two-sample MR analysis
and MVMR study to investigate the causal associations between calcium homeostasis and
psychiatric disorders.

2. Materials and Methods
2.1. Study Design

A bidirectional MR and an MVMR design were used to detect the causal effects
between genetically predicted calcium, 25OHD, PTH, FGF23, and nine psychiatric disorders
(Figure 1). The psychiatric disorders included AD, ADHD, anorexia nervosa (AN), ASD,
bipolar disorder (BD), major depressive disorder (MDD), obsessive–compulsive disorder
(OCD), Tourette syndrome (TS), and SCZ. The validity of genetic instruments is based on
three critical principles: (1) the single nucleotide polymorphisms (SNPs) from genome-
wide association studies (GWAS) applied as instrumental variables (IVs) were related to
exposures; (2) IVs must not be associated with confounders; (3) IVs should not affect the
outcome directly but only through their respective exposure traits [31] (Figure 1A).
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Figure 1. Study flow diagram. (A) Univariable Mendelian Randomization. The dashed lines with 
the symbol “X” represent the putative pleiotropic or direct causal effects between variables that 
might violate MR assumptions. (B) Multivariable MR (MVMR) allows an additional variable, be-
sides the main exposure. E.g., whether there is a causal effect of schizophrenia on 25OHD after con-
sidering body mass index, mineral supplements, or outdoor activities. ASD, autism spectrum dis-
order; ADHD, attention-deficit/hyperactivity disorder; SCZ, schizophrenia; BD, bipolar disorder; 
MDD, major depressive disorder; AD, Alzheimer’s disease; AN, anorexia nervosa; OCD, obsessive–
compulsive disorder; TS, Tourette syndrome; IVW, inverse-variance weighted; WM, weighted me-
dian; MR, Mendelian randomization; MR-PRESSO, MR pleiotropy residual sum and outlier. 
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Figure 1. Study flow diagram. (A) Univariable Mendelian Randomization. The dashed lines with the
symbol “X” represent the putative pleiotropic or direct causal effects between variables that might
violate MR assumptions. (B) Multivariable MR (MVMR) allows an additional variable, besides the
main exposure. E.g., whether there is a causal effect of schizophrenia on 25OHD after considering
body mass index, mineral supplements, or outdoor activities. ASD, autism spectrum disorder; ADHD,
attention-deficit/hyperactivity disorder; SCZ, schizophrenia; BD, bipolar disorder; MDD, major
depressive disorder; AD, Alzheimer’s disease; AN, anorexia nervosa; OCD, obsessive–compulsive
disorder; TS, Tourette syndrome; IVW, inverse-variance weighted; WM, weighted median; MR,
Mendelian randomization; MR-PRESSO, MR pleiotropy residual sum and outlier.

2.2. Data Extraction

The summary statistics were collected from Psychiatric Genomics Consortium (PGC:
https://www.med.unc.edu/pgc/, (accessed on 3 April 2023)) and GWAS summary data
(https://gwas.mrcieu.ac.uk/, (accessed on 11 April 2023)). Detailed information on the
GWAS datasets is provided in Table 1. Only summarized data from the European popula-
tion were utilized to minimize population heterogeneity bias.

The summary statistics for calcium homeostasis, including serum calcium, 25OHD,
FGF23, and PTH, were extracted from five different GWASs. According to Neale Lab
genome-wide association meta-analysis (http://www.nealelab.is/uk-biobank/, (accessed
on 11 April 2023)), the GWAS summary statistics for calcium was based on 315,153 samples
from UK Biobank [32]. This GWAS adjusted for age, sex, and the top twenty principal com-
ponents. The genetic predictors for serum 25OHD were obtained from the largest GWAS
(n = 443,734) [33], while the summary statistics for the other factors were derived from stud-
ies with n = 21,758 for FGF23 [34], and n = 3301 for PTH [35]. The sample sizes of nine psy-
chiatric disorders were as follows: AD [36] (71,880 cases and 383,378 controls), ADHD [37]
(38,691 cases and 38,691 controls), AN [38] (3495 cases and 10,982 controls), ASD [39]
(18,381 cases and 27,969 controls), BD [40] (20,352 cases and 31,358 controls), MDD [41]
(170,756 cases and 329,443 controls), OCD [42] (2688 cases and 7037 controls), SCZ [43]
(52,017 cases and 75,889 controls), and TS [44] (4819 cases and 9488 controls) (Table 1).
Informed consent and ethics approval were obtained for each of the original studies.

https://www.med.unc.edu/pgc/
https://gwas.mrcieu.ac.uk/
http://www.nealelab.is/uk-biobank/
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Table 1. Detailed information regarding studies and datasets used in the present study.

Exposure or Outcome Reference Participants Web Source

Serum 25-Hydroxyvitamin D levels PMID: 32059762 [33] 443,734 individuals * ebi-a-GCST010144
Calcium PMID: 34662886 [32] a 315,153 individuals * ukb-d-30680_irnt
Fibroblast growth factor 23 PMID: 33067605 [34] 21,758 individuals * ebi-a-GCST90012022
Parathyroid hormone PMID: 29875488 [35] 3301 individuals * prot-a-2431
Alzheimer’s disease PMID: 30617256 [36] 71,880 cases and 383,378 controls PGC
Attention-deficit/hyperactivity
disorder PMID: 29325848 [37] 38,691 cases and 38,691 controls PGC

Anorexia nervosa PMID: 28494655 [38] 3495 cases and 10,982 controls PGC
Autism spectrum disorder PMID: 30804558 [39] 18,381 cases and 27,969 controls PGC
Bipolar disorder PMID: 31043756 [40] 20,352 cases and 31,358 controls PGC
Major depressive disorder PMID: 30718901 [41] 170,756 cases and 329,443 controls PGC
Obsessive–compulsive disorder PMID: 28761083 [42] 2688 cases and 7037 controls PGC
Schizophrenia PMID: 35396580 [43] 52,017 cases and 75,889 controls PGC
Tourette syndrome PMID: 30818990 [44] 4819 cases and 9488 controls PGC

a http://www.nealelab.is/uk-biobank/, (accessed on 11 April 2023); Output from GWAS pipeline using Phesant-
derived variables from UK Biobank. * https://gwas.mrcieu.ac.uk/datasets/, (accessed on 11 April 2023);
PGC: https://pgc.unc.edu/, (accessed on 3 April 2023).

2.3. Selection of the Instrumental Variables (IVs)

In MR analyses, we used a p < 1 × 10−5 threshold to select SNPs as instrumental
variables. This approach was adopted to increase the number of SNPs available for sen-
sitivity analyses. SNPs with high linkage disequilibrium were excluded with a strict r2

cutoff of 0.0001 and a clumping window greater than 10,000 kb [45]. SNPs with indirect
effects were removed if they were associated (p-value < 0.001) with the outcomes. The
selection of IVs must fulfill three critical assumptions: the SNPs are highly associated with
the exposure but not with the outcome or confounding factors. The F-statistic values below
a threshold of 10 indicate a higher degree of bias [46]. We calculated the F statistic values
using the formula F = ((R2/(1 − R2)) × ((N − K − 1)/K)] to assess instrument strength
for the forward and reverse MR pairs. Briefly, the R2 represents the explained variance of
genetic instruments, K represents the total number of IVs included in each MR analysis,
and N represents the sample size of the exposure GWAS data [47].

2.4. Two-Sample Univariable MR Analysis

The main analysis was conducted using the random effects IVW method, which
provides precise causal estimates while adjusting for heterogeneity of IVs [48]. Weighted
median (WM) [48] and MR-Egger [49] were also employed as supplementary approaches
to investigate the causal correlation. MR-Egger is an adaption of Egger regression, and the
slope coefficient of the Egger regression can be used for causal effect estimation [48]. The
weighted median (WM) method is used to combine data from multiple genetic variants
into a single causal estimate. This estimator is consistent when as much as 50% of the
data is derived from invalid IVs [49]. The significant (p < 0.05) results of MR-IVW were
considered positive indicating a meaningful association. Furthermore, the direction of
the MR analysis results (beta value) remained consistent across all three methods (IVW,
MR-Egger and WM). [50]. Bonferroni’s correction for multiple testing was conducted to
estimate p-values. A p-value < 6.94 × 10−4 (0.05/36/2; 2 denotes both forward and reverse
MR tests) was a strong evidence of a causal association. The beta and 95% confidence
intervals (CIs) were used to present the causal correlation between psychiatric disorders
and calcium homeostasis. For the other direction, the casual estimate was presented as an
odds ratio (OR) and 95% CIs.

2.5. Sensitivity Analysis

Sensitivity analysis was conducted to identify any horizontal pleiotropy that would
contradict the main MR hypothesis. The MR analyses utilized the TwoSampleMR package

http://www.nealelab.is/uk-biobank/
https://gwas.mrcieu.ac.uk/datasets/
https://pgc.unc.edu/
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(version 0.5.6) [51]. A leave-one-out analysis was conducted to detect the causal estimates
that may be affected by a single SNP. The global MR pleiotropy residual sum and outlier
(MR-PRESSO) (https://github.com/rondolab/MR-PRESSO/, (accessed on 11 April 2023))
test was introduced to explore the possible outlier SNPs [52]. Next, we investigated the
possibility of directional pleiotropy and heterogeneity using MR-Egger regression and the
Cochran Q test [53]. Additionally, we conducted the MR-Steiger directionality test to assess
the potential causal correlation between the assumed exposure and potential outcomes.

2.6. MVMR Analysis

The multivariable Mendelian randomization (MVMR) was used to verify direct causal-
ity between psychiatric disorders and calcium homeostasis. MVMR-IVW, MVMR-Egger,
MVMR-Robust, MVMR-median, and the least absolute shrinkage and selection operator
(LASSO) were used to determine direct causality [54]. If at least one of these five methods
yields a significant result, it is considered that the causal relationship still exists even after
multivariable adjustment. To consider the potential for genetic confounding, traits such as
body mass index (BMI), obesity, mineral supplements (calcium), mineral supplement use
(fish oil), mineral supplements (vitamin D), time spent outdoors in winter, time spend out-
doors in summer, years of schooling, adopted as a child, breastfed as a baby, and household
income were examined. For each multivariable analysis, we added each genetic confound-
ing separately. The sample sizes for these factors were adopted from their respective
GWASs and ranged from 64,949 to 766,345 individuals (Supplementary Table S1).

3. Results
3.1. Genetic Instruments Selected in MR

The flowchart of the study design is illustrated in Figure 1. The details of IVs used in
the MR analysis are listed in Supplementary Table S2. All F statistic values were > 10, as
reported in Supplementary Table S3.

3.2. Causal Effect of Genetically Predicted Calcium Homeostasis on Psychiatric Disorders

According to the IVW results, genetically predicted Calcium was nominally associ-
ated with lower-odds OCD (odds ratio (OR) = 0.7891, 95% CI: 0.6342–0.9820; p = 0.0337;
p-Egger intercept = 0.2540; Figure 2A). The IVW analysis showed that the genetically
predicted serum 25OHD levels were associated with lower-odds ASD (OR = 0.7520, 95%
CI: 0.5889–0.9602; p = 0.0223). However, different MR analysis methods were contradic-
tory, and the MR-Egger test indicated that 25OHD is associated with higher-odds ASD
(OR = 1.8189, 95% CI: 0.6386–5.1812; p = 0.2644), although the association was not statisti-
cally significant. The direction of the causal relationship between FGF23 and ASD appears
contradictory across different methods. While the MR-Egger method suggests an increased
risk of ASD associated with FGF23, both WM and IVW methods indicate a protective
effect. These results did not meet the criteria for positive results in this study. The detailed
two-sample MR results can be viewed in Supplementary Table S4.

3.3. Causal Effect of Genetically Predicted Psychiatric Disorders on Calcium Homeostasis

In the reverse-direction MR study, the putative causal effects of psychiatric disorders
on calcium homeostasis were estimated (Figures 2B and 3). As shown by the funnel plot,
the effect size variation around the point estimate was symmetrical after excluding outliner
SNPs (Supplementary Figures S1–S6). The results of leave-one-out analysis confirmed that
single SNPs did not affect the causal association (Supplementary Figure S7).

https://github.com/rondolab/MR-PRESSO/
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Figure 3. Scatterplot of the effect of the psychiatric disorders and calcium homeostasis. An association
between the psychiatric disorders and calcium homeostasis through five Mendelian randomization
(MR) methods (A–F). The slope value equals the b-value calculated using the five methods and
represents the causal effect.

The Bonferroni-corrected P threshold of 6.94 × 10−4 obtained from 72 tests identi-
fied a significant causal correlation between SCZ and low levels of 25OHD. To reduce
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heterogeneity in causality, the SNPs identified as outliers (rs10873538, rs2252074, rs6690619,
rs6798742, and rs9304548) were removed from the analysis based on the results of the
MR-PRESSO test (Supplementary Figure S4). The causal effect estimate was −0.0164
(95% CI: −0.0226 to −0.0102, prandom-effect IVW = 2.39 × 10−7), which was consistent in the
weighted-median method (beta = −0.0178, 95% CI: −0.0258 to −0.0097, p = 1.45 × 10−5;
p-Egger intercept = 0.1764). The MR-Egger intercept test did not provide any evidence of
directional pleiotropy between SCZ and 25OHD. The current study detected heterogeneity
based on Cochran’s Q test, indicating that a random effects IVW model was appropriate.
Furthermore, after excluding outlier SNPs, the funnel plot showed symmetric variation
in effect size around the point estimate (Supplementary Figure S4B). The results of the
“leave-one-out” method confirmed that single SNPs did not affect the causal association
(Supplementary Figure S7D). The MR Steiger directionality test results indicated that our
estimation of causal direction is accurate.

Notably, ASD and BD showed a potential decrease in 25OHD levels (Figure 3B,D).
p-value < 0.05 indicated statistical significance for genetic correlations. The results of IVW
analysis showed a nominally causal effect of ASD on decreased 25OHD (beta = −0.0123,
95% CI: −0.0218 to −0.0028, p = 0.0112; p-Egger intercept = 0.4721). The directions of
the estimates from the WM and MR-Egger tests were the same as those from the IVW
method. Following the exclusion of one outlier SNP (rs4301023), the current study found
an association between BD and 25OHD levels (beta = −0.0078, 95% CI: −0.0142 to −0.0013,
p = 0.0183; p-Egger intercept = 0.2916). MR-Steiger directional test supported the hypothesis
(p-Steiger test= 5.96 × 10−10), and multiple sensitivity analyses suggested robust causal
correlations (Table 2). Furthermore, genetically predicted ASD has a causal effect on FGF23
(beta = 0.0564, 95% CI: 0.0074–0.1054, p = 0.0242; p-Egger intercept = 0.4457), and the causal
direction is accurate (p-Steiger test = 8.73 × 10−39). The Cochran-Q-test-derived p-value
was 0.5939, indicating no obvious heterogeneity (Table 2).

Table 2. Sensitivity analysis of the causal association.

Exposure:
Outcome F-Statistic MR-Egger_

Intercept

Egger
Intercept
_Pval a

IVW_
Cochrane_Q

Cochrane
_Q_Pval b

Steiger
Test

Steiger Test
_Pval c

Calcium: OCD 76.1028 −0.0058 0.2540 206.4289 0.4198 TRUE 1.83 × 10−11

SCZ: 25OHD 255.2465 −0.0009 0.1764 497.7460 1.02 × 10−15 TRUE <0.001
ASD: 25OHD 124.8705 0.0008 0.4721 52.9345 0.1425 TRUE 1.09 × 10−191

BD: 25OHD 168.0641 0.0011 0.2916 128.5298 0.0177 TRUE 5.96 × 10−10

ADHD: Calcium 108.0976 −0.0005 0.6884 163.5865 0.0009 TRUE <0.001
ASD: FGF23 125.5161 0.0046 0.4457 41.1640 0.5939 TRUE 8.73 × 10−39

a The MR-Egger intercept quantifies the effect of directional pleiotropy (p < 0.05, which means possible pleiotropy).
b The Cochrane-Q test quantifies the effect of heterogeneity (p < 0.05, which means possible heterogeneity, thus
prioritizing “random–IVW” methods). c MR-Steiger directionality test to assess the potential causal relationship.
F-stat, conditional F-statistic; Q, Cochran’s Q statistics; 25OHD: Serum 25-Hydroxyvitamin D levels; FGF23:
Fibroblast growth factor 23.

After excluding outlier SNPs (rs34008721, and rs139950543), ADHD was nominally asso-
ciated with an increase in calcium levels (beta = 0.0120, 95% CI: 0.0006–0.0234, prandom-effect IVW
= 0.0391; p-Egger intercept = 0.6884). Cochran’s Q test indicated heterogeneity in the
results, thus prioritizing “random–IVW” methods. MR-Steiger directional test supported
our hypothesis (p-Steiger test < 0.001).

3.4. Multivariable Mendelian Randomization

The detailed MVMR results are presented in Supplementary Tables S5–S10. In the
multivariable MR models, the results of the associations between SCZ and 25OHD were
also robust when adjusted for BMI (adjusted beta = −0.0206, 95% CI: −0.0299 to −0.0112,
pIVW = 1.56 × 10−5; adjusted beta =−0.0197, 95% CI:−0.0293 to−0.0100, pRobust = 6.17 × 10−5;
adjusted beta = −0.0246, 95% CI: −0.0316 to −0.0177, pLASSO = 3.51 × 10−12) and obesity (ad-
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justed beta =−0.0151, 95% CI:−0.0214 to−0.0088, pIVW = 2.72× 10−6; adjusted beta = −0.0139,
95% CI: −0.0205 to −0.0073, pRobust = 3.91 × 10−5; adjusted beta = −0.0130, 95% CI: −0.0177
to −0.0083, pLASSO = 7.23 × 10−8). Even after adjusting for mineral supplements (calcium,
fish oil, and vitamin D) and outdoor time (winter and summer), the significant association
between SCZ and 25OHD persisted (pIVW < 6.94 × 10−4), indicating that SCZ was an inde-
pendent risk factor for decreased 25OHD (Figure 4A and Supplementary Table S7). MVMR
analysis also indicated that ASD was a potential independent risk factor for decreased
25OHD (pIVW < 0.05) (Figure 4B).
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Figure 4. Multivariable MR (MVMR) associations of psychiatric disorders with calcium homeostasis.
(A) The causal effect of SCZ on 25OHD through MVMR analysis. (B) The causal effect of ASD on
25OHD through MVMR analysis. (C) The causal effect of BD on 25OHD through MVMR analysis.
(D) The causal effect of ADHD on calcium through MVMR analysis. (E) The causal effect of ASD on
FGF23 through MVMR analysis. (F) The causal effect of calcium on OCD through MVMR analysis.For
each multivariable analysis, we added each genetic confounding separately. If at least one of these
five methods yields a significant result, it is considered that the causal relationship still exists
even after multivariable adjustment. SCZ, schizophrenia; ASD, autism spectrum disorder; ADHD,
attention-deficit/hyperactivity disorder; BD, bipolar disorder; OCD, obsessive–compulsive disorder;
25OHD, serum 25-Hydroxyvitamin D levels; FGF23, fibroblast growth factor 2; IVW, inverse-variance
weighted; egger, MR-Egger; median, weighted median; lasso, least absolute selection, and shrinkage
operator; MR, Mendelian randomization. * p < 0.05.

In analyses using MVMR-Egger, BD was associated with a decreased 25OHD level when
adjusted for BMI (adjusted beta = −0.0039, 95% CI: −0.0150 to −0.0072, pEgger = 0.0143) and
time spent outdoors in summer (adjusted beta = −0.0082, 95% CI: −0.0141 to −0.0022,
pLASSO = 0.0070). Even after adjusting for mineral supplements (calcium, fish oil, and
vitamin D), the relationship between BD and 25OHD persisted when using the IVW
method (pIVW < 0.05) (Figure 4C).

The previously established causal relationship between ADHD and calcium result
became insignificant after adjusting for outdoor time. No genetic association of ASD
with FGF23 was found after correction for obesity and BMI. In addition, calcium was not
associated with a reduced risk of OCD in MVMR analysis after correcting for years of
schooling, breastfed as a baby, and household income (Figure 4).

4. Discussion

The primary objective of our study was to use bidirectional two-sample MR and
MVMR analysis to explore the causal associations between calcium homeostasis markers
(calcium, 25OHD, PTH, and FGF23) and nine psychiatric disorders. The present study
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provides valuable insights into the correlation between psychiatric disorders and calcium
homeostasis. MVMR analysis indicated that psychiatric disorders (SCZ, ASD, and BD)
were potential risk factors for decreased 25OHD.

After Bonferroni’s correction, the reverse MR analysis indicated that genetically pre-
dicted SCZ was significantly associated with decreased 25OHD. Further MVMR analysis
indicated that the relationship remains robust even after adjusting for another seven vari-
ables. We used the latest SCZ summary statistical data (n = 127,906) and the largest serum
25OHD GWAS dataset (n = 443,734). This result was consistent with other observational
studies. A cross-sectional study showed that SCZ patients had higher levels of C-reactive
protein (CRP) and lower levels of 25OHD than controls [55]. Low serum 25OHD levels have
been linked to high CRP levels in Mendelian randomization studies, and raising vitamin D
status may help to reduce inflammation [56]. A case–control study found that both low and
high concentrations of neonatal vitamin D are associated with an increased risk of SCZ [57].
The study found that first-episode psychosis (FEP) patients had low levels of 25OHD, and
low 25OHD level correlated with psychiatric symptoms [58]. The connection between early
nutrition and psychiatric disorders garnered significant attention. A Finnish birth cohort
study showed that men who received vitamin D supplements containing at least 2000 IU
during the first year of life had a lower risk of developing SCZ [22]. In a recent study using
a phenome-wide (PheWAS)-based Mendelian randomization, higher weighted genetic risk
scores (GRS) for SCZ were associated with low 25OHD levels and calcium content [59]. In
previous studies, vitamin D was negatively associated with MDD and SCZ PRS [60]. In
individuals with schizophrenia, the reduction in physical activity due to medication side
effects may contribute to an increased risk of vitamin D deficiency [59].

The current study showed a nominally association between genetically predicted
ASD and decreased 25OHD levels. A cross-sectional study suggested the mean level of
serum 25OHD levels was lower in the ASD group compared to the non-ASD group after
adjusting for age and sex [61]. The primary conversion steps of vitamin D absorption and
metabolism into 25OHD are predominantly catalyzed by the microsomal enzyme CYP2R1
which belongs to the cytochrome P-450 (CYP) family of enzymes and is mainly located
in the liver [62]. Oral supplementation with calcifediol (25OHD3) instead of vitamin D
alone could enhance the intake of the vitamin [63]. Neural development and normal brain
homeostasis are significantly affected by early nutrition, with a crucial role of vitamin D in
the development of the central nervous system, as supported by multiple studies [64,65].
A previous study found a correlation between low serum 25-OHD levels and increased
severity of symptoms in patients, with vitamin D supplementation resulting in improved
stereotypical behavior and attention span [20]. Another earlier study identified a link
between 25OHD and ADHD symptoms, and the use of vitamin D supplementation as
adjunctive therapy to methylphenidate showed improvement in patient symptoms [21].
According to many observational reviews, low vitamin D status may be common in ASD
or ADHD [66,67]. The current study also revealed a nominally association between BD
and decreased 25OHD levels. Previous studies have shown that patients experiencing
acute manic episodes have lower vitamin D serum concentrations compared to the healthy
control group [68]. Vitamin D supplementation was associated with a reduction in both
depressive and manic symptoms in patients with psychiatric disorders [69].

To the best of our knowledge, this is the most comprehensive and extensive MR
study investigating the genetic association between calcium homeostasis and psychiatric
disorders. Nevertheless, the present study has some limitations. Firstly, the GWAS studies
included in this research are based on European populations, reducing the possibility
of stratification bias. Different racial groups exhibit variations in vitamin D metabolism;
African Americans tend to have low levels of VDBP and 25OHD without evidence of
vitamin D deficiency [70]. However, it must be recognized that there may be racial/ethnic
differences [70,71]. Therefore, including populations with different characteristics (such
as race and age) in MR studies may provide different results. Secondly, the SNPs used in
the analysis did not reach conventional genome-wide association significance thresholds.
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However, the study had no weak IVs according to the F statistics. Thirdly, we used
the latest available GWAS with a maximum sample size in the data analysis; the field
of genetic research has a high rate of updates, and more GWAS will be available in the
future. The GWAS data used for calcium included in this study were obtained from
Neale Lab, and we acknowledge the limitation of relying on data from a single cohort. In
addition, the relationship between the calcium level or the 25OHD level and the risk of
diseases may be nonlinear [72]. It is possible that we may be missing the true link between
calcium levels and disease. We used the most recent GWAS data for our analysis, and
the current MR analysis does not support a direct causal relationship between calcium
levels and psychiatric disorders. It is important to note that findings from our MR study
should not be interpreted as final results. Finally, our findings supported the existence of
abnormalities in calcium and its regulating hormone levels in different psychiatric disorders.
While interpreting the results, the instrumental variables not originating from GWAS
focusing on children must be considered. The threshold for vitamin D supplementation
and the amount required among individuals of different ages and weights must also
be considered. In addition, large-scale studies are required to investigate the potential
long-term impact of vitamin D supplementation in patients with psychiatric disorders.
The choice between cholecalciferol (vitamin D3) and calcifediol (25OHD3) also needs to
be considered [63]. Resolving these issues is imperative to gain insight into the clinical
advantages of vitamin D supplementation. In future, randomized controlled trials can
provide a more dynamic perspective on the relationship between calcium homeostasis and
various psychiatric disorders.

5. Conclusions

In summary, this bidirectional MR study shows a significant correlation between SCZ
and 25OHD reduction predicted by genetics. It also provides evidence for previous studies,
such as abnormalities in calcium and its regulating hormone levels in different psychiatric
disorders. Thus, monitoring the 25OHD level in patients with psychiatric disorders may be
a good clinical practice.
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