

9

Original Article

Efficacy and Safety of Aviron Rapid® in Adolescents and Children with Viral Acute **Upper Respiratory Tract Infection: a Multi-**Center, Randomized, Double-Blind, Placebo-**Controlled Clinical Trial**

Rada M. Markova^{1,2}, Iren S. Tzotcheva³, Penka Perenovska⁴, Atanas Mangarov⁵, Lubomira Nikolaeva-Glomb⁶, Veselin Hadjiev⁷

¹ First Pediatric Consultative Clinic, Sofia, Bulgaria

- ² Medical University of Pleven, Pleven, Bulgaria
- ³ Pediatric Department, NI Pirogov University Hospital for Emergency Medicine, Sofia, Bulgaria
- ⁴ Pediatric Clinic, Alexandrovska University Hospital, Medical University of Sofia, Sofia, Bulgaria
- ⁵ Department of Infectious Diseases and Parasitology, Prof. I. Kirov University Hospital for Infectious and Parasitic Diseases, Medical University of Sofia, Sofia, Bulgaria
- ⁶ National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
- ⁷ Research Institute, University of Economics, Varna, Bulgaria

Corresponding author: Rada M. Markova, First Pediatric Consultative Clinic, 51 Bulgaria Blvd., 1404 Sofia, Bulgaria; Email: rada_markova@yahoo.com;

Received: 20 June 2023 Accepted: 28 June 2023 Published: 31 Aug 2023

Citation: Markova RM, Tzotcheva IS, Perenovska P, Mangarov A, Nikolaeva-Glomb L, Hadjiev V. Efficacy and safety of Aviron Rapid® in adolescents and children with viral acute upper respiratory tract infection: a multi-center, randomized, double blind, placebo-controlled clinical trial. Folia Med (Plovdiv) 2023;65(4):546-568. doi: 10.3897/folmed.65.e108153.

Abstract

Introduction: Acute upper respiratory tract infections (AURTIs) are associated with a significant burden on society attributed to medical care and loss of productivity. Novel therapies that are able to shorten disease duration, while providing symptom relief and being well tolerated, are an unmet medical need.

Aim: The main objective of this trial was to investigate the efficacy and safety of Aviron Rapid, a dietary supplement containing andrographolide, proprietary spirulina, and humic acid, in the management of AURTIs in adolescents and children.

Materials and methods: This randomized, double-blind, placebo-controlled trial was conducted between January 2020 and March 2020 in 85 general practitioner practices in Bulgaria. Adolescents (13-17 years) and children (5-12 years) with a clinical diagnosis of AURTI were randomly assigned to receive standard symptomatic therapy + Aviron Rapid or placebo for 5 and 7 days, respectively. The primary endpoints of this trial were the number (and percentage) of clinically recovered patients and the mean disease duration.

Results: In total, 380 adolescents and 401 children were enrolled in 2 age cohorts and randomly assigned to treatment with Aviron Rapid or placebo. The percentage of patients meeting the criteria for clinical recovery was significantly higher in the Aviron Rapid group compared with the placebo group from 24 and 48 hours after initiation of treatment in adolescents and children, respectively. Aviron Rapid treatment significantly reduced the duration of disease, of fever, and of antipyretics intake in both adolescents and children. When compared to placebo, a significantly higher percentage of adolescents and children on Aviron Rapid achieved a persistent decrease in temperature of less than 37°C as soon as 24 hours after starting treatment. Overall, a low number of adverse events was reported and no major differences in the incidence of individual adverse events were observed between the two treatment groups in both cohorts.

Conclusions: This clinical trial demonstrated the efficacy of Aviron Rapid in the management of acute upper respiratory tract infections in adolescents and children. Aviron Rapid treatment rapidly increased the number of clinically recovered patients and reduced overall

Copyright by authors. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

disease duration and duration of symptoms, in particular fever, while being well tolerated.

Trial registration: International Standard Randomised Controlled Trial Number (ISRCTN) 12221500. Retrospectively registered on 29 March 2022. [https://doi.org/10.1186/ISRCTN12221500]

Keywords

antivirals, acute upper respiratory tract infections, andrographolide, proprietary spirulina, humic acid

List of a	obreviations		
AE	adverse event	FPS-R	modified face pain scale
AURTI	acute upper respiratory tract infection	GP	general practitioner
CI	confidence interval	VAS	visual analogue scale

INTRODUCTION

Acute upper respiratory tract infections (AURTIs) are associated with a significant burden of disease. Easy airdrop transmission, short incubation time, and short-lived specific immunity contribute to more than 17 billion incident cases worldwide in 2019, resulting in a considerable non-fatal burden as the symptoms may significantly affect quality of life and productivity.^[1] Healthcare costs are estimated to exceed 40 billion dollars per year in the United States^[2], with an even higher economic burden attributable to loss of productivity. Children are particularly susceptible to suffering from AURTIs^[3], with an average of 6 to 8 episodes per year, compared with 2 to 4 episodes in $adults^{[4,5]}$. The majority of AURTIs are caused by viruses, most commonly rhinoviruses. Most treatments focus on symptom relief, including over-the-counter analgesics, zinc, nasal decongestants, and ipratropium for cough. The few safe and effective antiviral treatments available for clinical practice are not routinely used. These include M2 channel blockers^[6] (amantadine and rimantadine) with demonstrated effectiveness against influenza A virus, and neuraminidase inhibitors^[7] (oseltamivir and zanamivir) with activity against influenza A and B viruses. However, considering that AUR-TIs are mostly self-limiting and mild in severity, the use of antivirals is limited to immunocompromised patients who are more likely to develop severe infections or complications. In addition, oseltamivir-resistant viral strains have been isolated from patients, particularly immunocompromised patients.^[8] Frequent mutations of influenza viruses have also led to considerable resistance to M2 channel blockers.^[9] Therefore, novel therapeutic options with broad clinical antiviral efficacy and safety are an unmet medical need in the management of AURTIs.

Aviron Rapid[®] is a dietary supplement consisting of andrographolide, proprietary spirulina extract, and humic acid racemic mixture^[10] and is indicated in adults and children (>5 years). Andrographolide, spirulina, and humic acid have shown to be effective in the treatment of AUR-TIs^[11-15], predominantly through the prevention of viral at-tachment, blocking of viral reproductive mechanisms, and stimulation of the immune system.

AIM

The main objective of this trial was to evaluate the efficacy and safety of Aviron Rapid in patients with a viral AURTI clinically diagnosed by their general practitioner (GP) and treated according to standard medical practice.

MATERIALS AND METHODS

This was a multi-center, Phase 4, randomized, double-blind, placebo-controlled clinical trial with Aviron Rapid in patients with a viral AURTI, recruited from 85 GP practices in Bulgaria between January 27 and March 9, 2020. The trial included 3 age cohorts: adults (18–60 years), adolescents (13–17 years; also referred to as 'the adolescent cohort'), and children (5–12 years; also referred to as 'the pediatric cohort'). Informed consent was obtained from all participants participating in the study. Efficacy and safety data of the adult cohort in this trial have been reported previously.^[10] Here, we report efficacy and safety data from the adolescent and pediatric cohorts.

Trial population

Male and female adolescents (13–17 years, both inclusive) and children (5–12 years, both inclusive) with a clinical diagnosis of a viral AURTI were enrolled in the trial. Diagnosis by the GP was based on 1) an axillary temperature of more than 37.0°C and 2) presence of one or more of the

following symptoms with onset of the first symptom within 24 hours before screening: nasal congestion, cough, sore throat, headache, fatigue, and sleep disturbance. Patients with clinical symptoms of severe flu or AURTI requiring hospitalization, or with symptoms similar to AURTI but related to other underlying diseases (infectious diseases, flu-like syndrome in systemic connective tissue disease, onco-hematologic, and other diseases) were excluded. Other exclusion criteria focused on past or current use of medications or medical disorders that could potentially confound trial results or interfere with safe completion of the trial.

Trial design

Adolescents and children presenting to a GP practice with symptoms suggestive of viral AURTIs were clinically examined (including measurement of axillary temperature) by the GP on day 1 and, if eligible, were enrolled and randomly assigned (1:1) to receive active treatment or placebo in a double-blinded fashion. Patients in the active group (Group 1) received standard symptomatic therapy + Aviron Rapid, patients in the placebo group (Group 2) received standard symptomatic therapy + placebo.

Randomization of patients was done using software designed by an external, independent vendor and was stratified by center. The active and placebo treatments were packed in blisters and delivered to the GP practices in white paper boxes, labeled with unique treatment codes. Manufacturing, packaging, and labeling were performed by the sponsor of the trial. Patients, GPs, and the sponsor's project team were blinded to treatment group assignments throughout the trial and until database lock.

On day 1, patients or their parents were given a diary to record axillary temperature, antipyretics intake, symptom severity, and recovery status twice daily with 12-hour intervals (once in the morning, once in the evening) during the treatment period, i.e., days 1 to 5 for adolescents and days 1 to 7 for children. Adolescents recorded data in the diary under supervision of their parents. For children, data was recorded by the parents. After the end of treatment, on day 6 (adolescents) or day 8 (children), patients returned to the GP practice for a closing visit. During this visit, the GP clinically examined (including measurement of axillary temperature) the patient and verified completeness of the data recorded in the diary. In addition, on day 1, symptom severity was assessed and on day 6, a general evaluation of the patient's condition (recorded as 'healthy' or 'ill') was performed.

Trial treatment

Aviron Rapid was provided as 647-mg tablets for oral use containing 10 mg andrographolide, 100 mg proprietary spirulina extract, and 250 mg proprietary humic acid racemic mixture. Placebo was provided as tablets visually matching the Aviron Rapid tablets. Patients were treated according to the following schedule: adolescents: 3 tablets 3 times daily on day 1, 2 tablets 3 times daily on day 2, and 1 tablet 3 times daily on days 3 to 5; children: 2 tablets 3 times daily on day 1 and 1 tablet 3 times daily on days 2 to 7. Tablets were taken with water, in the morning, at noon, and in the evening. Standard symptomatic therapy included non-steroidal anti-inflammatory drugs, decongestants, bronchodilators, mucolytics, antitussives, and other drugs for treatment of chronic diseases. Use of other antiviral remedies, antihistamines, antibiotics, and interferons was not allowed.

Efficacy outcome measures and assessments

The primary endpoints of this trial were the number (and percentage) of clinically recovered patients and the mean disease duration. Patients were considered clinically recovered if the following 3 criteria were met: 1) persistent improvement of every symptom to "very mild" or "lack of symptoms" (severity score <2 as measured on a visual analogue scale [VAS] for adolescents or a modified face pain scale [FPS-R] for children) until the end of follow-up and a total severity score for all symptoms [i.e. the sum of the 6 individual symptom severity scores] <12 points; 2) persistent decrease of the axillary temperature to <37.0°C, i.e. temperature <37.0°C at 2 consecutive measurements with a 12-hour interval and no new increase >37°C (i.e., fever) until the end of follow-up; 3) the decrease in axillary temperature <37°C was achieved without the use of antipyretics. The severity of the symptoms nasal congestion, cough, sore throat, headache, fatigue, and sleep disturbance was measured using a VAS (for adolescents) or FPS-R (for children) ranging from 0 to 10 with 0 = lack of symptoms and 10 = very severe symptoms. Disease duration was defined as the interval between treatment initiation and the time point at which the patient met the criteria for clinically recovery. The primary endpoints were assessed twice daily with 12-hour intervals during the treatment period (days 1 to 5 for adolescents or days 1 to 7 for children) and recorded in the patient's diary.

Secondary efficacy endpoints included number (and percentage) of patients with persistent decrease of the axillary temperature <37.0°C without the use of antipyretics, mean time to persistent decrease of the axillary temperature <37.0°C, number (and percentage) of patients taking antipyretics, mean duration of antipyretic treatment, mean total severity score for all symptoms, number (and percentage) of patients with persistent improvement of a particular symptom (severity score <2), and number (and percentage) of patients considered fully recovered. Patients were considered fully recovered if at 2 consecutive measurements with a 12-hour interval they scored 2 or 3 on a scale ranging from 1 to 3 with 1 = I still feel ill; 2 = I feel better; 3 = I feel healthy. Secondary efficacy endpoints were assessed twice daily at 12-hour intervals and recorded in the patient's diary from day 1 to the end of treatment (day 5 [adolescents] or day 7 [children]) for axillary temperature, antipyretics intake, and symptom-related endpoints, and from day 1 to the closing visit (day 6 [adolescents] or day 8 [children]) for full recovery status.

Safety outcome measures and assessments

Safety-related endpoints included the incidence of adverse events (AEs), as recorded in the patient's diary during the treatment period, and physical examinations by the GP on days 1 and 6 (adolescents) or 8 (children).

Statistical analysis

The statistical analyses were done by an external blinded statistician. In both cohorts, a total number of 320 patients (160 per treatment group) were required to detect a difference of 5% between the two treatment groups with 80% power.

All patients who completed the treatment and all planned trial visits per protocol and did not have protocol deviations were included in the efficacy analyses. For the primary endpoint analysis, the 2-proportion Z-test was used to compare the percentages of clinically recovered patients between the active and placebo group. The mean disease duration in both groups was compared using an independent samples t-test. The secondary endpoints were analyzed using the same statistical methods as used for the primary endpoint analyses.

The safety analysis included all patients who received at least one dose of Aviron Rapid or a placebo. The incidence

of AEs was summarized descriptively. All statistical tests were two-sided except for the 2-proportion Z-test. Statistical significance was set at p<0.05. All statistical analyses were performed using SPSS 17.

RESULTS

Patient disposition and baseline demographics

The trial started on 27 January 2020 (i.e., enrollment of the first patient in the trial) and was completed on 14 March 2020 (i.e., end of follow-up for the last patient in the trial). In total, 380 adolescents and 401 children were enrolled in the respective cohorts and randomly assigned to one of the two treatment groups. Safety analyses included all randomized patients. Efficacy analyses comprised 329 adolescents and 319 children. The reasons for excluding patients from the efficacy analysis are shown in **Fig. 1**.

Overall, in the adolescent cohort, the mean age was 14.6 years and 54% of patients were male. In the pediatric cohort, the mean age was 8.6 years and 51% of patients were male. Patient demographics were comparable in the two treatment groups in both cohorts. The total symptom severity score at baseline was slightly higher in the adolescent cohort (25.6 and 24.9 in the active and placebo group, respectively) compared with the pediatric cohort (24.6 and 23.5, respectively). The mean axillary temperature was

Figure 1. Patient disposition (Safety Analysis). Safety analysis included all patients who received at least one dose of Aviron Rapid or placebo. Efficacy analysis included all patients who completed treatment and all planned trial visits per protocol, and did not have protocol deviations.

38°C in the active and placebo groups in both cohorts. The percentages of patients reporting any symptom at baseline were generally lower in the pediatric cohort, compared with the adolescent cohort. Nasal congestion was the most common symptom in both cohorts (reported in >91% of adolescents and >88% of children). There were no significant differences between the active and placebo group in both cohorts (**Table 1**).

For nasal congestion, cough, sore throat, headache, fatigue, and sleep disturbance, n (%) refers to the number (and percentage) of patients with a particular symptom at baseline; the mean values refer to the mean severity of a particular symptom at baseline.

Primary Endpoint

In the adolescent cohort, the percentages of patients meeting the criteria for clinical recovery were consistently higher in the active group compared with the placebo group from 24 hours after initiation of treatment (i.e., morning of day 2: 8.1% versus 1.9%, respectively; p=0.0055) until the end of treatment (i.e., evening of day 5: 90.7% versus 80.9%; p=0.0052). Differences were statistically significant (p<0.05) as of the morning of day 2 onwards until end of treatment, except for the morning of day 4 (p=0.0786) (**Fig. 2**) (**Supplementary Table 1**) (see Appendix). The mean disease duration was significantly lower in the active group (75 h, 95% CI: 70.80, 79.20) compared with the placebo group (85 h, 95% CI: 80.90, 89.10) (*p*=0.003) (**Fig. 3**).

Similar results were obtained in the pediatric cohort with consistently higher percentages of clinically recovered patients in the active group compared with the placebo group from 24 hours after initiation of treatment (i.e., morning of day 2: 5.6% versus 4.4%, respectively; p=0.31) until end of treatment (i.e., evening of day 7: 98.8% versus 89.2%; p=0.001). Differences were statistically significant (p<0.05) as of the morning of day 3 and throughout the treatment period (**Fig. 2**) (**Supplementary Table 1**) (see Appendix). The mean disease duration was significantly lower in the active group (85 h, 95% CI: 79.50, 90.50) compared with the placebo group (101 h, 95% CI: 94.40, 107.60) (p=0.003) (**Fig. 3**).

Secondary endpoints

Persistent decrease of temperature

From the morning of day 2 onwards until the end of treatment, the percentage of patients in the adolescent and pediatric cohorts with a persistent temperature decrease of <37°C was consistently higher in the active group than that in the placebo group, with the biggest difference between the two treatment groups being noticed on the morning

Table 1. Patient demographics and baseline symptoms (efficacy analysis)

		Adolescents (13-	17 years)	Children (5-12	2 years)
Parameter	Statistics	Active (Aviron Rapid) (n=172)	Placebo (n=157)	Active (Aviron Rapid) (n=161)	Placebo (n=158)
A (Mean	14.58	14.59	8.83	8.42
Age (years)	95% CI	(14.29, 14.71)	(14.28, 14.72)	(8.50, 9.16)	(8.07, 8.75)
Male	n (%)	91 (52.9%)	87 (55.4%)	76 (47.2%)	86 (54.4%)
Total symptom	Mean	25.6	24.9	24.6	23.5
severity score	95% CI	(24.13, 27.10)	(23.28, 26.52)	(23.10, 26.10)	(21.93, 25.10)
Axillary tempera-	Mean	38.15	38.11	38.09	38.23
ture (°C)	95% CI	(38.05, 38.25)	(38.01, 38.21)	(38.14, 38.34)	(38.00, 38.21)
	n (%)	160 (93.0%)	143 (91.1%)	148 (91.9%)	140 (88.6%)
Nasal congestion	Mean	4.71	4.67	5.01	4.76
	n (%)	155 (90.1%)	142 (90.4%)	139 (86.3%)	142 (89.9%)
Cough	Mean	4.74	4.90	5.25	4.65
	n (%)	164 (95.3%)	151 (96.2%)	129 (80.1%)	125 (79.1%)
Sore throat	Mean	5.22	5.19	5.36	5.62
TT 1 1	n (%)	163 (94.8%)	143 (91.1%)	122 (75.8%)	129 (81.6%)
Headache	Mean	4.83	4.63	4.87	4.79
Dati ma	n (%)	164 (95.3%)	149 (94.9%)	145 (90.1%)	139 (88.0%)
Fatigue	Mean	5.48	5.25	5.19	4.98
	n (%)	114 (66.3%)	108 (68.8%)	109 (67.7%)	89 (56.3%)
Sleep disturbance	Mean	3.26	2.88	3.47	3.12

Figure 2. Primary endpoint: percentage clinically recovered patients (Efficacy Analysis). *P*-values from 1-sided 2-proportion Z-test.

of day 5 in adolescents (90.7% versus 77.7%; p<0.001) and on the evening of day 3 in children (58.4% versus 38.6%; p=0.001) (**Fig. 4**) (**Supplementary Table 2**) (see Appendix). In both cohorts, the mean time to persistent decrease of temperature was significantly lower in the active group compared with the placebo group (65 h, 95% CI: 60.80, 69.20 vs. 74 h, 95% CI: 69.30, 78.70 in adolescents [p=0.005] and 48 h, 95% CI: 42.50, 53.50 vs. 72 h, 95% CI: 65.80, 78.20 in children [p=0.001]) (**Fig. 5**).

Antipyretics use

The percentage of adolescent patients taking antipyretics was consistently lower in the active group compared with the placebo group from the evening of day 1 onwards until the end of treatment. In the pediatric cohort, statistically significantly lower percentages of patients on antipyretics were observed as of the morning of day 3 until the end of treatment (**Fig. 6**) (**Supplementary Table 3**) (see Appendix). The mean duration of antipyretics intake was signifi-

Figure 4. Secondary endpoints: Percentage of patients with persistent decrease of temperature <37°C (Efficacy Analysis). *P*-values from 1-sided 2-proportion Z-test.

Figure 5. Secondary endpoints: mean time to persistent decrease of temperature <37°C (Efficacy Analysis). *P*-values from 2-sided independent samples T-test.

Figure 6. Secondary endpoints: percentage of patients taking antipyretics (Efficacy Analysis). *P*-values from 1-sided 2-proportion Z test for adolescents and 2-sided Pearson chi-square test for children.

cantly lower in the active group compared with the placebo group, both in the adolescent cohort (50 h, 95% CI: 45.90, 54.10 vs. 58 h, 95% CI: 53.60, 62.30; p=0.007) and in the pediatric cohort (43 h, 95% CI: 39.40, 46.60 vs. 62 h, 95% CI: 56.00, 68.00; p<0.001) (Fig. 7).

Symptom severity

The mean total severity of clinical symptoms in the adolescents in the active group was consistently lower than that in the placebo group from the evening of day 1 until the end of treatment, with day 3 showing the biggest difference between the two groups (**Supplementary Table 4**) (see Appendix). For nasal congestion, cough, and sleep disturbance, the percentages of adolescents with persistent improvement were consistently higher in the active group compared with the placebo group throughout the entire treatment period. As of the morning of day 2 until the end of treatment, a higher percentage of patients in the active group had persistent improvement of sore throat compared with the placebo group. No relevant differences between the two groups were observed for headache and fatigue (**Supplementary Tables 5–10**) (see Appendix).

Among children in the active group, the mean total severity of clinical symptoms was consistently lower than that of the placebo group as of the morning of day 3 until the end of treatment. Before that time point, the mean total score was higher in the placebo group (**Supplementary Table 4**) (see Appendix). A similar pattern was observed for the individual symptoms nasal of congestion and cough, for which statistically significantly higher percentages of children with persistent improvement in the active group were only observed from day 5 (for nasal congestion) or day 6 (for cough) onwards. For fatigue, sore throat, and sleep disturbance, the percentages of children with persistent improvement were consistently higher in the active group compared with the placebo group as of the evening of day 1 or the morning of day 2 and throughout the entire treatment period. The largest difference between the two groups was observed on days 3 and 4 for fatigue and sleep disturbance, and on days 4 and 5 for sore throat. For headache, similar percentages were observed in both groups throughout the treatment period until the morning of day 6. As of the evening of day 6 until the end of treatment, significantly higher percentages of patients in the active group had persistent improvement of headache compared with the placebo group (**Supplementary Tables 5–10**) (see Appendix).

The percentage of adolescents and children being considered fully recovered was consistently higher in the active group as of the evening of day 2 or the evening of day 1, respectively, until nearly all patients in both groups reached full recovery by the end of treatment (**Supplementary Table 11**) (see Appendix).

Safety endpoints

In both cohorts, the incidence of AEs was similar in the active and placebo groups. No serious AEs were reported. In the adolescent cohort, 14 (7.3%) patients in the active group and 23 (12.2%) in the placebo group reported AEs, the most common being antibiotic treatment for unknown reason (reported in 13 [6.8%] and 17 [9.0%] patients, respectively). In the pediatric cohort, 30 (14.8%) and 27 (13.6%) patients in the active and placebo group, respectively, reported AEs, the most common also being antibiotic treatment for unknown reason (in 20 [9.9%] and 18 [9.1%] patients, respectively) (**Table 2**). Only one child in the placebo group experienced an AE of allergic reaction, and one adolescent (in the active group) and four children (2 in each treatment group) were hospitalized. No clinically relevant findings were reported for physical examinations.

DISCUSSION

Acute upper respiratory tract infections are a major cause of morbidity and one of the most frequent reasons for chil-

dren and adults to visit GP offices. Given that the majority of AURTIs have a viral etiology, their management is often limited to symptomatic medications. However, there is no conclusive evidence that these medications also shorten symptom duration.^[16,17] Moreover, the use of over-thecounter medications for AURTIs in children is often limited given the higher risk of side effects.^[18] The rapid evolvement of certain viruses to escape human immunity limits the efficacy of antivirals and complicates the development of vaccines. Given the major burden AURTIs have on society due to missed work and (unnecessary) medical care and the emergence of new viruses potentially giving rise to major outbreaks or even pandemics, novel approaches with efficacy against a broad range of common viruses are urgently needed. In this trial, an alternative approach in the management of AURTIs was evaluated, relying on the potential synergistic activity of three naturally occurring ingredients with demonstrated in vitro and in vivo antiviral effects. Aviron Rapid is a dietary supplement approved for human use containing andrographolide, proprietary spirulina extract, and humic acid, which have the potential to target viral replication at different levels, including viral cell surface attachment^[19], viral envelope fusion to the endosomal membrane^[20], viral RNA polymerase endonuclease activity^[21], and intracellular viral particle transport^[22]. The clinical benefit of Aviron Rapid in the management of AURTIs in adolescents and children was supported by results obtained in the adult cohort of this trial^[10], which demonstrated that daily use of Aviron Rapid for 5 days decreases disease duration, intake of antipyretics, and symptom severity. Significant differences were observed as early as 12 or 24 hours after initiation of treatment.

This clinical trial demonstrated that daily use of Aviron Rapid for 5 (adolescents) or 7 (children) days in combination with standard symptomatic therapy resulted in a significantly shorter duration of disease compared with placebo. The percentage of clinically recovered patients was significantly higher in adolescents and children on Aviron Rapid than in those on placebo from 24 and 48 hours after start of treatment, respectively. Aviron Rapid intake

Table 2	2. Incid	ence of ad	verse events	(safety anal	lysis)
---------	-----------------	------------	--------------	--------------	--------

	Adolescents (13-1	7 years)	Children (5-12 years)	
	Active (Aviron Rapid) (n=192)	Placebo (n=188)	Active (Aviron Rapid) (n=203)	Placebo (n=198)
Any adverse event, n (%)	14 (7.3%)	23 (12.2%)	30 (14.8%)	27 (13.6%)
Antibiotic treatment for unknown reason	13 (6.8%)	17 (9.0%)	20 (9.9%)	18 (9.1%)
Bronchitis	0 (0%)	2 (1.1%)	6 (3.0%)	4 (2.0%)
Hospitalization	1 (0.5%)	0 (0%)	2 (1.0%)	2 (1.0%)
Otitis	0 (0%)	2 (1.1%)	1 (0.5%)	1 (0.5%)
Laryngitis	0 (0%)	1 (0.5%)	1 (0.5%)	0 (0%)
Acute tonsillitis	0 (0%)	1 (0.5%)	0 (0%)	1 (0.5%)
Allergic reaction	0 (0%)	0 (0%)	0 (0%)	1 (0.5%)

significantly reduced the duration of fever (i.e., an axillary temperature >37°C) and the duration of antipyretics intake. As early as 24 hours after start of treatment, a significantly higher percentage of adolescents and children on Aviron Rapid achieved persistent decrease of temperature <37°C. The effect of Aviron Rapid treatment on symptom relief was generally more pronounced in adolescents than in children. Remarkably, throughout the entire treatment period, a higher percentage of adolescents on Aviron Rapid experienced relief of nasal congestion, cough, and sleep disturbance compared with placebo. In children, a similar beneficial effect on nasal congestion and cough was observed, though it became apparent later in the course of disease (i.e. by days 5 and 6, respectively). The largest difference in percentage of patients with relief of sore throat between the Aviron Rapid and placebo group was observed on days 3 and 4 for adolescents and on days 4 and 5 for children.

Across both cohorts, a low number of AEs was reported and no major differences in the incidence of individual AEs were observed between the two treatment groups.

The results of this trial confirm the promising results previously obtained with Aviron Rapid in adults^[10] and warrant further research into the potential synergistic effects of the three active ingredients in Aviron Rapid in the management of viral AURTIs. The therapeutic potential of Aviron Rapid in this age group is further supported by the fact that children are even more susceptible to AURTIs than adults are.

Given that the standard approach to managing AURTIs in contemporary outpatient practice does not include testing to identify the infectious agent, one limitation of this trial was the lack of confirmation of the viral etiology of the AURTIs. Moreover, it cannot be guaranteed that the trial included only patients who visited their general practitioner's office within 24 hours of the onset of their first symptom. Another limitation of the trial was the relatively small sample size.

CONCLUSIONS

The results of this trial in adolescents and children confirms previous data reporting on the efficacy of Aviron Rapid, a dietary supplement containing andrographolide, proprietary spirulina extract, and humic acid, in the management of AURTIs in adults. Aviron Rapid treatment rapidly increased the number of clinically recovered patients and reduced overall disease duration and duration of symptoms, in particular fever, while being well tolerated.

Ethics approval and consent to participate

The trial protocol and informed consent were approved by the Ethics Committee of the First Pediatric Consultative Clinic, Ltd, Bulgaria (on November 30, 2019, ref No. 033/30.10.2019). The trial was conducted in accordance with the Declaration of Helsinki, the protocol, the International Council for Harmonisation for Good Clinical Practice Guideline E6 (R2), and local ethical and legal requirements. Written informed consent was obtained from all patients' parents prior to trial entry.

Consent for publication

Not applicable

Availability of data and materials

The dataset supporting the conclusions of this article is included within the article (and the Supplementary Tables).

Competing interests

The authors declare that they have no competing interests.

Funding

This trial was funded by Neopharm Bulgaria Ltd. The funder of the trial had no role in the trial design, data collection, data analysis, data interpretation, or writing of the manuscript.

Author Contribution

Conceptualization of the trial: R.M.M., I.S.T, and L.N.; Trial methodology: R.M.M., I.S.T, and L.N.; Investigation of participants: R.M.M., I.S.T, P.P., and A.M.; Supervision of the trial: R.M.M. and I.S.T.; Validation of trial data: P.P. and R.M.M.; Project administration: A.M.; Visualization of trial data: I.S.T., R.M.M., and P.P.; Resources: L.N.; Data curation, Formal analysis, Software: V.H. All authors contributed to data analysis, drafting, and revising the manuscript. All authors reviewed and approved the final manuscript.

Acknowledgments

Medical writing support was provided by Ans Rombout, Emtex Life Science, Belgium. The authors would like to thank all GPs and patients (and their parents) who participated in the trial.

REFERENCES

1. Jin X, Ren J, Li R, et al. Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. eClinicalMedicine 2021; 37:100986.

- Fendrick AM, Monto AS, Nightengale B, Sarnes M. The economic burden of noninfluenza-related viral respiratory tract infection in the United States. Arch Intern Med 2003; 163(4):487–94.
- Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev 2010; 23(1):74–98.
- Gwaltney Jr JM, Hendley JO, Simon G, et al. Rhinovirus infections in an industrial population. I. The occurrence of illness. N Engl J Med 1966; 275(23):1261–8.
- Dingle JH, Badger GF, Jordan Jr WS. Illness in the home: A study of 25,000 illnesses in a group of Cleveland families. Cleveland, Ohio: Press of Western Reserve University; 1964.
- Vorobjev YN. An effective molecular blocker of ion channel of M2 protein as anti-influenza a drug. J Biomol Struct Dyn 2021; 39(7):2352–63.
- Laborda P, Wang SY, Voglmeir J. Influenza neuraminidase inhibitors: synthetic approaches, derivatives and biological activity. Molecules 2016; 21(11):1513.
- Lampejo T. Influenza and antiviral resistance: an overview. Eur J Clin Microbiol Infect Dis 2020; 39(7):1201–8.
- Hussain M, Galvin HD, Haw TY, et al. Drug resistance in influenza A virus: the epidemiology and management. Infect Drug Resist 2017; 10:121–34.
- Popov G, Gospodinova-Bliznakova M, Kalvatchev Z, et al. Efficacy and safety of Aviron Rapid[®] in 18-60-year-old patients with clinical diagnosis of acute respiratory viral infection: a multicenter, randomized, double-blind, placebo-controlled clinical trial. Folia Med (Plovdiv) 2021; 63(1):129–37.
- Ding Y, Chen L, Wu W, et al. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-kB and JAK-STAT signaling pathway. Microbes Infect 2017; 19(12):605–15.
- 12. Chen JX, Xue HJ, Ye WC, et al. Activity of andrographolide and its

derivatives against influenza virus in vivo and in vitro. Biol Pharm Bull 2009; 32(8):1385–91.

- Chen YH, Chang GK, Kuo SM, et al. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality. Sci Rep 2016; 6:24253.
- Khan Z, Bhadouria P, Bisen PS. Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol 2005; 6(5):373–9.
- Lu FJ, Tseng SN, Li ML, et al. In vitro anti-influenza virus activity of synthetic humate analogues derived from protocatechuic acid. Arch Virol 2002; 147(2):273–84.
- Smith SM, Schroeder K, Fahey T. Over-the-counter (OTC) medications for acute cough in children and adults in community settings. Cochrane Database Syst Rev 2014; 2014(11):CD001831.
- Paul IM, Yoder KE, Crowell KR, et al. Effect of dextromethorphan, diphenhydramine, and placebo on nocturnal cough and sleep quality for coughing children and their parents. Pediatrics 2004; 114(1):e85–e90.
- Food and Drug Administration (FDA). Should you give kids medicine for coughs and colds? Available from: https://www.fda.gov/consumers/consumer-updates/should-you-give-kids-medicine-coughsand-colds. Updated 01 May 2023. Accessed 09 May 2023.
- Klocking R, Helbig B. Medical aspects and applications of humic substances. In: Steinbuchel A, editor. Biopolymers online: Biology, chemistry, biotechnology, applications. Wiley; 2005.
- 20. Hosoya M, Balzarini J, Shigeta S, et al. Differential inhibitory effects of sulfated polysaccharides and polymers on the replication of various myxoviruses and retroviruses, depending on the composition of the target amino acid sequences of the viral envelope glycoproteins. Antimicrob Agents Chemother 1991; 35(12):2515–20.
- Lin TP, Chen SY, Duh PD, et al. Inhibition of the Epstein-Barr virus lytic cycle by andrographolide. Biol Pharm Bull 2008; 31(11):2018–23.
- 22. Xia YF, Ye BQ, Li YD, et al. Andrographolide attenuates inflammation by inhibition of NF-kappa B activation through covalent modification of reduced cysteine 62 of p50. J Immunol 2004; 173(6):4207–17.

Appendix

Supplementary tables

Additional tables which present results of the trial not included in the body of the manuscript.

Supplementary Table 1. Primary endpoint: number and percentage of clinically recovered patients (Efficacy Analysis)

	Active (Avi	iron Rapid)	Pla		
Time Point	n cumulative	% cumulative	n cumulative	% cumulative	P-value ^a
Adolescents (13-17 years)	N=	172	N=	157	
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	0	0.0	0	0.0	-
Day 2 - morning	14	8.1	3	1.9	0.0055
Day 2 - evening	24	14.0	8	5.1	0.0033
Day 3 - morning	42	24.4	23	14.6	0.0128
Day 3 - evening	58	33.7	37	23.6	0.0217
Day 4 - morning	89	51.7	69	43.9	0.0786
Day 4 - evening	112	65.1	88	56.1	0.0474
Day 5 - morning	141	82.0	112	71.3	0.0107
Day 5 - evening	156	90.7	127	80.9	0.0052
Children (5-12 years)	N=	161	N=158		
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	0	0.0	0	0.0	-
Day 2 - morning	9	5.6	7	4.4	0.31
Day 2 - evening	14	8.7	11	7.0	0.28
Day 3 - morning	25	15.5	17	10.8	0.01
Day 3 - evening	52	32.3	35	22.2	0.02
Day 4 - morning	72	44.7	55	34.8	0.03
Day 4 - evening	87	54.0	67	42.4	0.01
Day 5 - morning	111	68.9	87	55.1	0.005
Day 5 - evening	120	74.5	100	63.3	0.01
Day 6 - morning	139	86.3	115	72.8	0.001
Day 6 - evening	148	91.9	123	77.8	0.001
Day 7 - morning	152	94.4	135	85.4	0.003
Day 7 - evening	159	98.8	141	89.2	0.001

^a *P*-values from 1-sided 2-proportion Z test. Values in bold are statistically significant (*p*<0.05).

Supplementary Table 2. Secondary endpoint: number and percentage of patients with persistent decrease of temperature <37°C (Efficacy Analysis)

	Active (Aviron Rapid)		Pla		
Time Point	n cumulative	% cumulative	n cumulative	% cumulative	P-value ^a
Adolescents (13-17 years)	N=	172	N=	157	
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	0	0.0	0	0.0	-
Day 2 - morning	26	15.1	14	8.9	0.0427
Day 2 - evening	38	22.1	22	14.0	0.0287
Day 3 - morning	59	34.3	44	28.0	0.1092
Day 3 - evening	82	47.7	60	38.2	0.0411
Day 4 - morning	121	70.3	96	61.1	0.0393
Day 4 - evening	136	79.1	107	68.2	0.0173
Day 5 - morning	156	90.7	122	77.7	< 0.001
Day 5 - evening	164	95.3	135	86.0	0.0017
Children (5-12 years)	N=	161	N=158		
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	0	0.0	0	0.0	-
Day 2 - morning	35	21.7	20	12.7	0.016
Day 2 - evening	49	30.4	32	20.3	0.019
Day 3 - morning	76	47.2	49	31.0	0.001
Day 3 - evening	94	58.4	61	38.6	0.001
Day 4 - morning	105	65.2	82	51.9	0.008
Day 4 - evening	111	68.9	96	60.8	0.064
Day 5 - morning	131	81.4	117	74.1	0.051
Day 5 - evening	140	87.0	123	77.8	0.015
Day 6 - morning	151	93.8	136	86.1	0.011
Day 6 - evening	157	97.5	140	88.6	0.001
Day 7 - morning	159	98.8	151	95.6	0.041
Day 7 - evening	161	100.0	154	97.5	0.021

^a *P*-values from 1-sided 2-proportion Z test. Values in bold are statistically significant (*p*<0.05).

Supplementary	Table 3. Seconda	ry endpoint: numb	er and percentag	e of patients	taking antipyretics	(Efficacy	Analysis
---------------	------------------	-------------------	------------------	---------------	---------------------	-----------	----------

	Active (Av	iron Rapid)	Plac	cebo	D 1 4
Time Point	n cumulative	% cumulative	n cumulative	% cumulative	<i>P</i> -value ^a
Adolescents (13-17 years)	N=	:172	N=	157	
Initial visit/Baseline	172	100.0	157	100.0	-
Day 1 - evening	134	77.9	135	86.0	0.0287
Day 2 - morning	101	58.7	110	70.1	0.0156
Day 2 - evening	101	58.7	103	65.6	0.0989
Day 3 - morning	64	37.2	75	47.8	0.0259
Day 3 - evening	49	28.5	62	39.5	0.0175
Day 4 - morning	16	9.3	28	17.8	0.0175
Day 4 - evening	12	7.0	19	12.1	0.0570
Day 5 - morning	6	3.5	8	5.1	0.2365
Day 5 - evening	2	1.2	6	3.8	0.0634
Children (5-12 years)	N=	161	N=158		
Initial visit/Baseline	161	100.0	158	100.0	-
Day 1 - evening	126	78.3	132	83.5	0.230
Day 2 - morning	97	60.2	107	67.7	0.165
Day 2 - evening	84	52.2	99	62.7	0.058
Day 3 - morning	53	32.9	77	48.7	0.004
Day 3 - evening	47	29.2	75	47.5	< 0.001
Day 4 - morning	18	11.2	45	28.5	< 0.001
Day 4 - evening	15	9.3	46	29.1	< 0.001
Day 5 - morning	9	5.6	29	18.4	< 0.001
Day 5 - evening	3	1.9	22	13.9	< 0.001
Day 6 - morning	1	0.6	14	8.9	< 0.001
Day 6 - evening	0	0.0	14	8.9	< 0.001
Day 7 - morning	0	0.0	8	5.1	0.004
Day 7 - evening	0	0.0	8	5.1	0.004

^a *P*-values from 1-sided 2-proportion Z test for adolescents and 2-sided Pearson Chi-Square test for children. Values in bold are statistically significant (p<0.05).

Time Point	Active (Aviron Rapid)	Placebo	<i>P</i> -value ^a
Adolescents (13-17 years)	N=172	N=157	
Initial visit/Baseline	25.6	24.9	0.515
Day 1 - evening	25.4	26.0	0.625
Day 2 - morning	22.4	23.8	0.238
Day 2 - evening	20.0	21.5	0.215
Day 3 - morning	14.6	17.2	0.017
Day 3 - evening	12.6	14.8	0.041
Day 4 - morning	9.3	10.6	0.149
Day 4 - evening	7.3	8.5	0.159
Day 5 - morning	5.3	6.2	0.171
Day 5 - evening	3.6	4.8	0.071
Children (5-12 years)	N=161	N=158	
Initial visit/Baseline	24.6	23.5	0.304
Day 1 - evening	25.4	24.0	0.239
Day 2 - morning	22.0	21.4	0.655
Day 2 - evening	20.1	19.6	0.663
Day 3 - morning	16.5	16.6	0.93
Day 3 - evening	14.6	15.8	0.271
Day 4 - morning	11.4	13.2	0.077
Day 4 - evening	10.0	11.7	0.094
Day 5 - morning	7.5	9.2	0.034
Day 5 - evening	6.9	7.8	0.233
Day 6 - morning	5.3	6.8	0.028
Day 6 - evening	4.3	5.4	0.07
Day 7 - morning	3.1	4.2	0.034
Day 7 - evening	2.2	3.4	0.009

Supplementary Table 4. Secondary endpoint: mean total severity of clinical symptoms (Efficacy Analysis)

^a *P*-values from 2-sided independent samples T-test. Values in bold are statistically significant (*p*<0.05).

Symptom severity was measured on a visual analogue scale (VAS) for adolescents or a modified face pain scale (FPS-R) for children; the total score ranged from 0 to 60.

Supplementary Table 5. Secondary	endpoint: number and	percentage of patients witho	ut nasal congestion (Effic	acy Analysis)
----------------------------------	----------------------	------------------------------	----------------------------	---------------

	Active (Av	iron Rapid)	Plac	D 1 4	
Time Point	n cumulative	% cumulative	n cumulative	% cumulative	<i>P</i> -value ^a
Adolescents (13-17 years)	N=	160	N=	143	
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	20	12.5	9	6.3	0.0335
Day 2 - morning	22	13.8	12	8.4	0.0688
Day 2 - evening	32	20.0	15	10.5	0.0113
Day 3 - morning	44	27.5	24	16.8	0.0129
Day 3 - evening	54	33.8	33	23.1	0.0200
Day 4 - morning	74	46.3	55	38.5	0.0852
Day 4 - evening	96	60.0	68	47.6	0.0153
Day 5 - morning	120	75.0	90	62.9	0.0113
Day 5 - evening	133	83.1	99	69.2	0.0022
Children (5-12 years)	N=	148	N=140		
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	9	6.1	11	7.9	0.72
Day 2 - morning	10	6.8	13	9.3	0.78
Day 2 - evening	14	9.5	15	10.7	0.63
Day 3 - morning	19	12.8	26	18.6	0.91
Day 3 - evening	31	20.9	30	21.4	0.54
Day 4 - morning	50	33.8	43	30.7	0.29
Day 4 - evening	63	42.6	54	38.6	0.24
Day 5 - morning	84	56.8	68	48.6	0.08
Day 5 - evening	91	61.5	73	52.1	0.05
Day 6 - morning	105	70.9	82	58.6	0.01
Day 6 - evening	118	79.7	97	69.3	0.02
Day 7 - morning	128	86.5	108	77.1	0.01
Day 7 - evening	136	91.9	116	82.9	0.01

 $^{\rm a}$ P-values from 1-sided 2 proportion Z-test. Values in bold are statistically significant (p<0.05).

Only patients experiencing this symptom at baseline were included in the analysis.

	Active (Av	Active (Aviron Rapid)		Placebo		
Time Point	n cumulative	% cumulative	n cumulative	% cumulative	<i>P</i> -value ^a	
Adolescents (13-17 years)	N=	155	N=	142		
Initial visit/Baseline	0	0.0	0	0.0	-	
Day 1 - evening	24	15.5	14	9.9	0.0747	
Day 2 - morning	29	18.7	17	12.0	0.0555	
Day 2 - evening	37	23.9	20	14.1	0.0161	
Day 3 - morning	47	30.3	24	16.9	0.0034	
Day 3 - evening	54	34.8	32	22.5	0.0098	
Day 4 - morning	71	45.8	49	34.5	0.0237	
Day 4 - evening	83	53.5	65	45.8	0.0925	
Day 5 - morning	108	69.7	85	59.9	0.0385	
Day 5 - evening	123	79.4	102	71.8	0.0634	
Children (5-12 years)	N=	139	N=	142		
Initial visit/Baseline	0	0.0	0	0.0	-	
Day 1 - evening	5	3.6	5	3.5	0.48	
Day 2 - morning	6	4.3	10	7.0	0.83	
Day 2 - evening	10	7.2	12	8.5	0.65	
Day 3 - morning	11	7.9	17	12.0	0.87	
Day 3 - evening	19	13.7	22	15.5	0.66	
Day 4 - morning	34	24.5	35	24.6	0.51	
Day 4 - evening	42	30.2	46	32.4	0.65	
Day 5 - morning	59	42.4	58	40.8	0.39	
Day 5 - evening	68	48.9	66	46.5	0.34	
Day 6 - morning	83	59.7	73	51.4	0.08	
Day 6 - evening	98	70.5	85	59.9	0.03	
Day 7 - morning	113	81.3	101	71.1	0.02	
Day 7 - evening	124	89.2	111	78.2	0.01	

Supplementary Table 6. Secondary endpoint: number and percentage of patients without cough (Efficacy Analysis)

^a *P*-values from 1-sided 2 proportion Z-test. Values in bold are statistically significant (*p*<0.05).

Only patients experiencing this symptom at baseline were included in the analysis.

Supplementary	Table	7. Secondary en	ndpoint: numbe	r and percenta	age of patients	s without sore	throat (Efficac	y Analysis
---------------	-------	-----------------	----------------	----------------	-----------------	----------------	-----------------	------------

	Active (Av	iron Rapid)	Plac		
Time Point	n cumulative	% cumulative	n cumulative	% cumulative	P-value"
Adolescents (13-17 years)	N=164		N=	N=151	
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	20	12.2	19	12.6	0.5429
Day 2 - morning	31	18.9	28	18.5	0.4638
Day 2 - evening	45	27.4	40	26.5	0.4287
Day 3 - morning	67	40.9	49	32.5	0.0613
Day 3 - evening	84	51.2	61	40.4	0.0273
Day 4 - morning	119	72.6	92	60.9	0.0137
Day 4 - evening	131	79.9	107	70.9	0.0316
Day 5 - morning	143	87.2	127	84.1	0.2161
Day 5 - evening	154	93.9	139	92.1	0.2653
Children (5-12 years)	N=129		N=125		
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	15	11.6	15	12.0	0.54
Day 2 - morning	23	17.8	21	16.8	0.42
Day 2 - evening	32	24.8	26	20.8	0.22
Day 3 - morning	50	38.8	46	36.8	0.37
Day 3 - evening	64	49.6	57	45.6	0.26
Day 4 - morning	85	65.9	68	54.4	0.03
Day 4 - evening	98	76.0	79	63.2	0.01
Day 5 - morning	107	82.9	89	71.2	0.01
Day 5 - evening	113	87.6	98	78.4	0.02
Day 6 - morning	121	93.8	109	87.2	0.03
Day 6 - evening	122	94.6	114	91.2	0.14
Day 7 - morning	127	98.4	118	94.4	0.04
Day 7 - evening	128	99.2	122	97.6	0.15

^a *P*-values from 1-sided 2 proportion Z-test. Values in bold are statistically significant (*p*<0.05).

Only patients experiencing this symptom at baseline were included in the analysis.

	Active (Aviron Rapid)		Pla			
Time Point	n cumulative	% cumulative	n cumulative	% cumulative	P-value ^a	
Adolescents (13-17 years)	N=163		N=	N=143		
Initial visit/Baseline	0	0.0	0	0.0	-	
Day 1 - evening	23	14.1	22	15.4	0.6256	
Day 2 - morning	41	25.2	36	25.2	0.5000	
Day 2 - evening	61	37.4	46	32.2	0.1706	
Day 3 - morning	96	58.9	77	53.8	0.1846	
Day 3 - evening	112	68.7	91	63.6	0.1732	
Day 4 - morning	130	79.8	111	77.6	0.3193	
Day 4 - evening	142	87.1	119	83.2	0.1684	
Day 5 - morning	151	92.6	132	92.3	0.4605	
Day 5 - evening	158	96.9	135	94.4	0.1402	
Children (5-12 years)	N=122		N=129			
Initial visit/Baseline	0	0.0	0	0.0	-	
Day 1 - evening	13	10.7	19	14.7	0.82	
Day 2 - morning	35	28.7	40	31.0	0.65	
Day 2 - evening	52	42.6	55	42.6	0.5	
Day 3 - morning	74	60.7	73	56.6	0.25	
Day 3 - evening	83	68.0	83	64.3	0.26	
Day 4 - morning	98	80.3	96	74.4	0.13	
Day 4 - evening	104	85.2	103	79.8	0.13	
Day 5 - morning	112	91.8	116	89.9	0.3	
Day 5 - evening	113	92.6	118	91.5	0.37	
Day 6 - morning	117	95.9	120	93.0	0.15	
Day 6 - evening	120	98.4	121	93.8	0.03	
Day 7 - morning	122	100.0	124	96.1	0.01	
Day 7 - evening	122	100.0	126	97.7	0.04	

Supplementary Table 8. Secondary endpoint: number and percentage of patients without headache (Efficacy Analysis)

^a *P*-values from 1-sided 2 proportion Z-test. Values in bold are statistically significant (*p*<0.05).

Only patients experiencing this symptom at baseline were included in the analysis.

Supplementary Table 9. Secondary endpoint: number a	nd percentage of patients without fatigue (Efficacy Ana	alysis)
---	---	---------

Time Deint	Active (Av	iron Rapid)	Pla	D 1 3	
Time Point	n cumulative	% cumulative	n cumulative	% cumulative	<i>P</i> -value ^a
Adolescents (13-17 years)	N=164		N=	N=149	
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	20	8.5	17	8.7	0.5251
Day 2 - morning	44	18.3	34	21.5	0.7609
Day 2 - evening	61	28.0	58	27.5	0.4607
Day 3 - morning	96	46.3	98	47.7	0.5979
Day 3 - evening	136	59.8	143	55.0	0.1955
Day 4 - morning	190	76.2	196	73.2	0.2708
Day 4 - evening	228	84.1	225	81.9	0.3022
Day 5 - morning	265	93.3	257	89.3	0.1038
Day 5 - evening	282	94.5	275	93.3	0.3285
Children (5-12 years)	N=	145	N=139		
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	12	8.3	8	5.8	0.21
Day 2 - morning	31	21.4	23	16.5	0.14
Day 2 - evening	49	33.8	36	25.9	0.07
Day 3 - morning	79	54.5	61	43.9	0.03
Day 3 - evening	90	62.1	70	50.4	0.02
Day 4 - morning	112	77.2	92	66.2	0.02
Day 4 - evening	119	82.1	99	71.2	0.01
Day 5 - morning	128	88.3	113	81.3	0.04
Day 5 - evening	131	90.3	121	87.1	0.19
Day 6 - morning	138	95.2	126	90.6	0.06
Day 6 - evening	140	96.6	131	94.2	0.16
Day 7 - morning	142	97.9	133	95.7	0.14
Day 7 - evening	144	99.3	135	97.1	0.08

^a *P*-values from 1-sided 2 proportion Z-test. Values in bold are statistically significant (*p*<0.05).

Only patients experiencing this symptom at baseline were included in the analysis.

	Active (Av	iron Rapid)	Pla	n 1 a		
Time Point	n cumulative	% cumulative	n cumulative	% cumulative	<i>P</i> -value ^a	
Adolescents (13-17 years)	N=114		N=	N=108		
Initial visit/Baseline	0	0.0	0	0.0	-	
Day 1 - evening	39	34.2	32	29.6	0.2313	
Day 2 - morning	51	44.7	42	38.9	0.1907	
Day 2 - evening	65	57.0	58	53.7	0.3105	
Day 3 - morning	83	72.8	69	63.9	0.0769	
Day 3 - evening	88	77.2	75	69.4	0.0943	
Day 4 - morning	101	88.6	84	77.8	0.0154	
Day 4 - evening	103	90.4	89	82.4	0.0406	
Day 5 - morning	107	93.9	97	89.8	0.1315	
Day 5 - evening	110	96.5	102	94.4	0.2258	
Children (5-12 years)	N=	109	N=89			
Initial visit/Baseline	0	0.0	0	0.0	-	
Day 1 - evening	8	7.3	6	6.7	0.43	
Day 2 - morning	29	26.6	23	25.8	0.44	
Day 2 - evening	46	42.2	35	39.3	0.33	
Day 3 - morning	63	57.8	42	47.2	0.06	
Day 3 - evening	72	66.1	47	52.8	0.02	
Day 4 - morning	82	75.2	57	64.0	0.04	
Day 4 - evening	91	83.5	70	78.7	0.19	
Day 5 - morning	95	87.2	74	83.1	0.21	
Day 5 - evening	97	89.0	76	85.4	0.22	
Day 6 - morning	102	93.6	80	89.9	0.17	
Day 6 - evening	107	98.2	83	93.3	0.04	
Day 7 - morning	108	99.1	84	94.4	0.02	
Day 7 - evening	109	100.0	86	96.6	0.02	

Supplementary Table 10. Secondary endpoint: number and percentage of patients without sleep disturbance (Efficacy Analysis)

^a *P*-values from 1-sided 2 proportion Z-test. Values in bold are statistically significant (*p*<0.05).

Only patients experiencing this symptom at baseline were included in the analysis.

Supplementary Table	11. Secondary endpoint: number a	nd percentage of patients consid	dered fully recovered	(Efficacy Analysis)
----------------------------	----------------------------------	----------------------------------	-----------------------	---------------------

	Active (Av	iron Rapid)	Pla	D 1 4	
Time Point	n cumulative	% cumulative	n cumulative	% cumulative	<i>P</i> -value ^a
Adolescents (13-17 years)	N=172		N=157		
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	0	0.0	0	0.0	-
Day 2 - morning	55	32.0	32	20.4	0.0086
Day 2 - evening	107	62.2	71	45.2	0.0010
Day 3 - morning	125	72.7	95	60.5	0.0094
Day 3 - evening	148	86.0	131	83.4	0.2561
Day 4 - morning	162	94.2	141	89.8	0.0697
Day 4 - evening	168	97.7	151	96.2	0.2134
Day 5 - morning	171	99.4	155	98.7	0.2549
Day 5 - evening	172	100.0	157	100.0	-
Day 6 – morning (closing visit)	172	100.0	157	100.0	-
Children (5-12 years)	N=161		N=158		
Initial visit/Baseline	0	0.0	0	0.0	-
Day 1 - evening	31	19.3	27	17.1	0.305
Day 2 - morning	50	31.1	42	26.6	0.187
Day 2 - evening	82	50.9	66	41.8	0.051
Day 3 - morning	100	62.1	81	51.3	0.025
Day 3 - evening	124	77.0	104	65.8	0.013
Day 4 - morning	134	83.2	117	74.1	0.023
Day 4 - evening	143	88.8	130	82.3	0.049
Day 5 - morning	149	92.5	140	88.6	0.116
Day 5 - evening	156	96.9	145	91.8	0.024
Day 6 - morning	159	98.8	151	95.6	0.041
Day 6 - evening	161	100.0	156	98.7	0.073
Day 7 - morning	161	100.0	157	99.4	0.162
Day 7 - evening	161	100.0	158	100.0	-
Day 8 – morning (closing visit)	161	100.0	158	100.0	-

^a *P*-values from 1-sided 2 proportion Z-test for adolescents and from 2-sided Pearson Chi-Square test for children. Values in bold are statistically significant (p<0.05).

A patient is considered fully recovered if he/she is scored 2 ('I feel better') or 3 ('I feel healthy') on a scale ranging from 1 to 3, with 1 indicating 'I still feel ill'.

Эффективность и безопасность препарата на Aviron Rapid[®] у подростков и детей с острой вирусной инфекцией верхних дыхательных путей: многоцентровое рандомизированное двойное слепое плацебо-контролируемое клиническое исследование

Рада М. Маркова^{1, 2}, Ирен С. Цочева³, Пенка Переновска⁴, Атанас Мангаров⁵, Любомира Николаева-Гломб⁶, Веселин Хаджиев⁷

¹ Первая детская консультативная клиника, София, Болгария

² Медицинский университет – Плевен, Плевен, Болгария

³ Педиатрическое отделение, УМБАЛСМ "Н. И. Пирогов", София, Болгария

⁴ Педиатрическая клиника, УМБАЛ "Александровска", Медицинский университет – София, София, Болгария

⁵ Кафедра инфекционных болезней и паразитологии, УМБАЛ инфекционных и паразитарных болезней "Проф. И. Киров", МУ – София, София, Болгария

⁶ Национальный центр заразных и паразитарных болезней, София, Болгария

⁷ Научно-исследовательский институт, Экономический университет, Варна, Болгария

Адрес для корреспонденции: Рада М. Маркова, Первая детская консультативная клиника, бул. "България" № 51, 1404 София, Болгария; Email: rada_markova@yahoo.com

Дата получения: 20 июня 2023 **◆** Дата приемки: 28 июня 2023 **◆** Дата публикации: 31 августа 2023

Образец цитирования: Markova RM, Tzotcheva IS, Perenovska P, Mangarov A, Nikolaeva-Glomb L, Hadjiev V. Efficacy and safety of Aviron Rapid^{*} in adolescents and children with viral acute upper respiratory tract infection: a multi-center, randomized, double blind, placebo-controlled clinical trial. Folia Med (Plovdiv) 2023;65(4):546-568. doi: 10.3897/folmed.65.e108153.

Резюме

Введение: Острые инфекции верхних дыхательных путей (ОИВДП) связаны со значительным бременем для общества, связанным с медицинским обслуживанием и снижением производительности труда. Новые методы лечения, способные сократить продолжительность заболевания, обеспечивая облегчение симптомов и хорошую переносимость, являются неудовлетворённой медицинской потребностью.

Цель: Основная цель этого исследования заключалась в изучении эффективности и безопасности Aviron Rapid, пищевой добавки, содержащей андрографолид, запатентованную спирулину и гуминовую кислоту, при лечении ОИВДП у подростков и детей.

Материалы и методы: Это рандомизированное двойное слепое плацебо-контролируемое исследование проводилось в период с января 2020 г. по март 2020 г. в 85 врачебных кабинетах общей практики в Болгарии. Подростки (13–17 лет) и дети (5–12 лет) с клиническим диагнозом ОИВДП были рандомизированы для получения стандартной симптоматической терапии + Aviron Rapid или плацебо в течение 5 и 7 дней соответственно. Первичными конечными точками этого исследования были число (и процент) клинически выздоровевших пациентов и средняя продолжительность заболевания.

Результаты: В общей сложности 380 подростков и 401 ребёнок были включены в 2 возрастные когорты и случайным образом распределены для лечения препаратом Aviron Rapid или плацебо. Процент пациентов, отвечающих критериям клинического выздоровления, был значительно выше в группе Aviron Rapid по сравнению с группой плацебо через 24 и 48 часов после начала лечения у подростков и детей соответственно. Лечение Aviron Rapid значительно сократило продолжительность заболевания, лихорадки и приёма жаропонижающих средств как у подростков, так и у детей. По сравнению с плацебо, значительно более высокий процент подростков и детей, принимавших Aviron Rapid, достиг стойкого снижения температуры менее чем на 37° С уже через 24 часа после начала лечения. В целом было зарегистрировано небольшое количество нежелательных явлений, и не наблюдалось существенных различий в частоте отдельных нежелательных явлений между двумя группами лечения в обеих когортах.

Заключение: Это клиническое исследование продемонстрировало эффективность препарата Aviron Rapid при лечении острых инфекций верхних дыхательных путей у подростков и детей. Лечение Aviron Rapid быстро увеличивало число клинически выздоровевших пациентов и уменьшало общую продолжительность заболевания и продолжительность симптомов, в частности лихорадки, при хорошей переносимости.

Регистрация исследования: Международный стандартный номер рандомизированного контролируемого исследования (ISRCTN) 12221500. Ретроспективно зарегистрировано 29 марта 2022 г. [https://doi.org/10.1186/ISRCTN12221500].

Ключевые слова

противовирусные препараты, острые инфекции верхних дыхательных путей, андрографолид, патентованная спирулина, гуминовая кислота