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Abstract: This study aims to examine the relationships of dietary α-carotene and β-carotene intake
with cognitive function. The data were selected from the National Health and Nutrition Examination
Survey (NHANES) 2011–2014. A total of 2009 participants were included in this analysis. Dietary
α-carotene and β-carotene intake were averaged by two 24-h dietary recalls. The Consortium to
Establish a Registry for Alzheimer’s Disease Word Learning subset (CERAD W-L), Animal Fluency
Test (AFT), and Digit Symbol Substitution Test (DSST) were used to evaluate cognitive function.
Logistic regression and restricted cubic spline models were applied to explore the associations
of dietary α-carotene and β-carotene intake with cognitive performance. After adjusting for all
confounding factors, compared with individuals in the lowest quartile of β-carotene dietary intake,
those in the highest quartile had lower risks of both CERAD W-L decline [odds ratio (OR) = 0.63,
95% confidence interval (CI): 0.44–0.90] and AFT decline (OR = 0.66, 95% CI: 0.47–0.94). In addition,
the third quartile of β-carotene dietary intake had a significantly decreased risk of lower DSST
(OR = 0.67, 95% CI: 0.48–0.83). Compared with the lowest quartile of α-carotene intake, the OR
of AFT decline in the highest intake quartile was 0.66 (95% CI: 0.46, 0.94). For males, both dietary
α-carotene and β-carotene intake were associated with a decreased risk of AFT decline (OR = 0.42,
95% CI: 0.25–0.71; OR = 0.51, 95% CI: 0.30–0.85, respectively). For females, dietary α-carotene intake
was associated with a decreased risk of CERAD W-L decline (OR = 0.55, 95% CI: 0.33–0.91) and
dietary β-carotene intake was associated with decreased risks of both CERAD W-L and AFT decline
(OR = 0.37, 95% CI: 0.21–0.64; OR = 0.58, 95% CI: 0.37–0.91, respectively). Our results suggested that
higher dietary α-carotene and β-carotene intake had inverse effects on cognitive function decline
among older adults.

Keywords: α-carotene; β-carotene; cognitive function; cross-sectional study

1. Introduction

With the increased life expectancy around the world, the number of elderly people
with cognitive decline has been escalating, causing a burden for their families and govern-
ments. The decline in cognitive function is associated with various factors [1], including
normal aging processes and neurological diseases. However, without any prevention
measures to delay cognitive function decline, the decline in cognitive function will grad-
ually develop into mild cognitive impairment (MCI) and Alzheimer’s disease [2]. The
process of Alzheimer’s disease is irreversible, and medical treatment for this disease is still
limited. According to statistics in 2021, there were approximately 6.2 million Alzheimer’s
patients in America [3], and this number was estimated to rise to 13.8 million by the
mid-century. Deaths resulting from Alzheimer’s disease increased by more than 145%
between 2000 and 2019, which is far more serious than death from stroke, cancer, and heart
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disease [3]. Thus, it is important to explore the risk factors of Alzheimer’s disease and other
cognitive impairments.

Previous studies have shown that lack of physical activity [4], obesity [5], low edu-
cation level [6], smoking [7], and lack of nutrition [8], such as vitamin B12 and metals [9],
are risk factors associated with cognitive function decline. The underlying mechanism
of vitamin B12 on cognitive function is related to the activation of methylation reactions
in the brain [10]. According to previous studies, vitamin A, an antioxidant in the central
nervous system [11], also participates in cognitive function decline in older people [12].
Both α-carotene and β-carotene can be transformed into retinol, which will be converted
into a long-chain fatty acid ester that is the main precursor of vitamin A in the human
body [13,14]. Thus, α-carotene and β-carotene may have similar effects on neurocognitive
decline. Some previous studies showed that higher levels of α-carotene and β-carotene in
the plasma were associated with better cognitive function [15,16]. However, the relation-
ships of dietary α-carotene and β-carotene consumption with cognitive function have not
been well explored.

Therefore, we used the National Health and Nutrition Examination Survey (NHANES)
to explore the association of dietary α-carotene and β-carotene intake with cognitive
function in elderly people. In addition, we also investigated the dose-response relationships
of dietary α-carotene and β-carotene intake with cognitive function decline.

2. Materials and Methods
2.1. Study Population

As a cross-sectional survey, the NHANES was administered by the Centers for Disease
Control and Prevention (CDC), aiming to estimate the health and nutritional status of the
U.S. population [17]. The protocols in the NHANES were approved by the Review Board
of the National Center for Health Statistics Ethics (NCHS). All the participants provided
informed consent before the survey.

The data on dietary α-carotene and β-carotene intake and cognitive function measures
were obtained from two cycles of the 2011–2012 and 2013–2014 NHANES. A total of
19,931 participants were recruited in the first round. We then excluded the participants
who were under 60 years old (n = 16,229) and did not have complete data for cognitive
function measurements (n = 2934). To reduce the influences of outliers on the analysis,
participants with extreme values (dietary α-carotene intake > 1379.5 mcg/d and dietary
β-carotene intake > 7876 mcg/d) (n = 410) and incomplete 24 h recall data for α-carotene or
β-carotene intake (n = 515) were also excluded. Finally, 2009 participants were included in
this analysis (Figure 1).

2.2. Measurement of the Dietary α-Carotene and β-Carotene Intake

The dietary interview component in the NHANES was conducted by the U.S. Depart-
ment of Agriculture (USDA) and the Department of Health and Human Services (DHHS).
Under the cooperation, the survey sample design and data collection were processed by
the NCHS. The dietary methodology was designed by the Food Surveys Research Group
(FSRG). There were standardized investigation processes and strict quality controls in
the survey.

Regarding previous studies, dietary information about α-carotene and β-carotene
was obtained from 24 h dietary recall interviews [9,18]. The first day of diet recall was
gathered in person during the visit and the next interview was conducted after 3–10 days
through telephone. The detailed process of dietary data collection can be found on the
NHANES website [19]. Nutrient intake profiles reported by individuals assembled detailed
information about various food/beverage items. Information on recalls was acquired
from “Total Nutrient Intakes Files”. In this study, the total α-carotene and β-carotene
intake was calculated by the mean value of two dietary recalls. We categorized dietary
α-carotene and β-carotene intake into quartiles according to published articles for further
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study (Q1: <25th percentile, Q2: ≥25th to 50th percentile, Q3: ≥50th to 75th percentile, Q4:
≥75th percentile with Q1 as the reference) [20].
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2.3. Assessments of Cognitive Function

The NHANES survey contained three cognitive function tests including the Consor-
tium to Establish Registry for Alzheimer’s disease (CERAD W-L), Animal Fluency Test
(AFT), and Digit Symbol Substitution Test (DSST). These cognitive function tests have
been performed in large epidemiological and clinical studies [21–23]. For quality control,
participants could choose their familiar language during the surveys, and the surveys were
administered by two trained interviewers in the Mobile Examination Center. All tests were
completed on the same day.

The CERAD W-L was separated into three successive learning trials and a delayed
recall. The delayed word recall did not start until the other two cognitive tests were over.
The score for each test ranged from 0 to 10 points. In the learning trials, participants were
guided to read 10 unrelated words, and then they were asked to recall as many words
as possible according to the sequence of the words. The sequence of words would be
changed after each trial. The AFT was used to examine categorical verbal fluency, which is
a component of executive function. In this test, participants were asked to name as many
animals as possible in one minute, and a correct name was assigned one point. Participants
in the DSST were required to finish the corresponding logograms in the 133 boxes in 2 min,
and the final score was calculated by the total number of correct answers [24–26].

Until now, there were no standard cut-off points in the CERAD W-L, AFT, and DSST.
According to previous papers, we classified the scores into quartiles and defined the
minimum quartile for each test as the reference group [20,27,28]. Regarding the CERAD
W-L, AFT, and DSST scores, the cut-off values were 20, 12, and 33, respectively. Participants
whose scores were lower than the corresponding cut-off values in tests were assigned to the
low cognitive function group, and other participants were assigned to the normal cognitive
function groups.

2.4. Other Variables of Interest

The set of covariates was based on previous studies [18,29,30]. We selected socioe-
conomic status variables, including age, gender (male/female), race/ethnicity (Mexican
American, other Hispanic, non-Hispanic white, non-Hispanic black, or other race), marital
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status (married, widowed, divorced, separated, never married, or living with a partner),
education (<high school, high school, or >high school), poverty-income ratio, body mass
index (BMI), health behavior variables such as smoking and drinking status, and health
factors such as diabetes. The poverty ratio was a concept of social economics that was
calculated by dividing family (or individual) income by the poverty guidelines specific
to the survey year. Smoking status was divided into two groups (yes/no) based on the
item “Have you smoked at least 100 cigarettes in your entire life”. Participants were char-
acterized as alcohol drinkers if they consumed at least 12 alcoholic drinks per year. The
history of diabetes was defined by the doctor’s diagnosis (yes, no, or borderline). For
MCI/dementia participants, confounding factors were provided by family members in the
NHANES project.

2.5. Statistical Analysis

In this study, both α-carotene and β-carotene were Ln-transformed due to the skewed
distribution. Continuous variables and categorical variables are presented as the mean
[standard deviation (SD)] and percentage (%), respectively. The differences between the
two groups were examined using the Student’s t-test and the chi-squared test.

Furthermore, dietary α-carotene and β-carotene intake were modeled as both continu-
ous (Ln-transformed) and categorical variables to explore the associations with cognitive
function by logistic regression. In the logistic regression analysis, the crude model had no
adjustment, while model I was adjusted for age, gender, race/ethnicity, and BMI. Model II
was then adjusted for all potential confounding factors, including age, race/ethnicity, gen-
der, BMI, education, marital status, poverty-income ratio, smoking status, alcohol intake,
and diabetes.

We further performed a stratified analysis by gender to examine the associations of
dietary α-carotene and β-carotene intake with the three cognitive function tests. Model II
was adjusted for all potential covariates mentioned above.

Additionally, the restricted cubic spline (RCS) was utilized to explore the dose-
response relationships of dietary α-carotene and β-carotene intake with cognitive function.
There were four knots at the 5th, 25th, 75th, and 95th percentiles of the dietary α-carotene
and β-carotene intake after adjusting for all covariates. SPSS (version 24.0) and R (vision
4.0.3, R Foundation for Statistical Computing) were used to analyze the data. A two-tailed
p value less than 0.05 was considered statistically significant.

3. Results

Table 1 shows the basic characteristics of the participants from the NHANES 2011–2014
in three cognitive tests (CERAD W-L, AFT, and DSST), which were categorized into low
cognition and normal cognition groups. In all cognitive tests, the participants in the low
cognitive function group were older, tended to be non-black, be married, and have lower
levels of poverty-income ratio, dietary β-carotene intake, and education. In the AFT, the
participants in the low cognition group had lower dietary α-carotene intake than those in
the normal cognition group. Moreover, in the CERAD W-L, participants in the low cognition
group had lower BMI levels than those in the normal cognition group. Participants in the
low cognition group from both the AFT and DSST were mostly alcohol drinkers and had
no history of diabetes (all p values < 0.05). No significant differences in smoking status
were observed between the two groups in all cognitive tests.

The associations between dietary α-carotene and β-carotene intake and cognitive
functions by the CERAD W-L, AFT, and DSST are depicted in Table 2. In the CERAD W-L,
the odds ratio (OR) values in the crude model of cognitive function with β-carotene intake
in the second quartile (Q2), third quartile (Q3), and fourth quartile (Q4) groups were 0.72
[95% confidence interval (CI): 0.53, 0.98], 0.66 (95% CI: 0.50, 0.88) and 0.60 (95% CI: 0.37,
0.69), respectively, compared to those in the first quartile (Q1) group. After adjusting for all
covariates in model II, the OR value in the Q4 group for dietary β-carotene intake was 0.63
(95% CI: 0.44, 0.90) compared to the Q1 group.
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Table 1. Baseline characteristics of participants classified by cognitive function status.

CERAD W-L AFT DSST

Low Cognitive
Function

Normal Cognitive
Function p-Value Low Cognitive

Function
Normal Cognitive

Function p-Value Low Cognitive
Function

Normal Cognitive
Function p-Value

Age a 72.22 (6.84) 68.56 (6.44) <0.001 71.17 (6.82) 68.95 (6.61) <0.001 71.61 (6.81) 68.79 (6.56) <0.001
Poverty-income ratio a 2.23 (1.51) 2.76 (1.59) <0.001 2.16 (1.46) 2.77 (1.59) <0.001 1.78 (1.26) 2.89 (1.58) <0.001

BMI a 28.73 (6.40) 29.70 (6.53) 0.005 29.25 (6.39) 29.53 (6.54) 0.424 29.46 (6.52) 29.47 (6.51) 0.974
Ln α-carotene a 4.49 (1.67) 4.60 (1.62) 0.218 4.40 (1.59) 4.62 (1.64) 0.013 4.48 (1.63) 4.60 (1.63) 0.155
Ln β-carotene a 6.62 (1.23) 6.92 (1.08) <0.001 6.61 (1.22) 6.91 (1.09) <0.001 6.54 (1.23) 6.94 (1.07) <0.001

Gender b

male 291 (60.4%) 694 (45.4%)
<0.001

219 (49.8%) 766 (48.8%)
0.724

254 (55.0%) 731 (47.3%)
0.004female 191 (39.6%) 833 (54.6%) 221 (50.2%) 803 (51.2%) 208 (45.0%) 816 (52.7%)

Race/ethnicity b

Mexican American 52 (10.8%) 113 (7.4%)

0.035

34 (7.7%) 131 (8.3%)

<0.001

61 (13.2%) 104 (6.7%)

<0.001
Other Hispanic 55 (11.4%) 134 (8.8%) 48 (10.9%) 141 (9.0%) 81 (17.5%) 108 (7.0%)

Non-Hispanic White 239 (49.6%) 804 (52.7%) 162 (36.8%) 881 (56.2%) 152 (32.9%) 891 (57.6%)
Non-Hispanic Black 107 (22.2%) 356 (23.3%) 157 (35.7%) 306 (19.5%) 155 (33.5%) 308 (19.9%)

Other Race 29 (6.0%) 120 (7.9%) 39 (8.9%) 110 (7.0%) 13 (2.8%) 136 (8.8%)
Marital status b

Married 256 (53.1%) 869 (56.9%)

0.004

224 (50.9%) 901 (57.4%)

<0.001

214 (46.3%) 911 (58.9%)

<0.001

Widowed 114 (23.7%) 262 (17.2%) 115 (26.1%) 261 (16.6%) 127 (27.5%) 249 (16.1%)
Divorced 53 (11.0%) 234 (15.3%) 58 (13.2%) 229 (14.6%) 55 (11.9%) 232 (15.0%)
Separated 16 (3.3%) 44 (2.9%) 17 (3.9%) 43 (2.7%) 29 (6.3%) 31 (2.0%)

Never married 25 (5.2%) 84 (5.5%) 19 (4.3%) 90 (5.7%) 25 (5.4%) 84 (5.4%)
Living with a partner 18 (3.7%) 34 (2.2%) 7 (1.6%) 45 (2.9%) 12 (2.6%) 40 (2.6%)

Education b

<High school 187 (38.8%) 275 (18.0%)
<0.001

158 (35.9%) 304 (19.4%)
<0.001

240 (51.9%) 222 (14.4%)
<0.001High school 115(23.9%) 368 (24.1%) 128 (29.1%) 355 (22.6%) 114 (24.7%) 369 (23.9%)

>High school 180 (37.3%) 884 (57.9%) 154 (35.0%) 910 (58.0%) 108 (23.4%) 956 (61.8%)
Smoking status b

Yes 243 (50.4%) 803 (52.6%)
0.405

232 (52.7%) 814 (51.9%)
0.753

238 (51.5%) 808 (52.2%)
0.787No 239 (49.6%) 724 (47.4%) 208 (47.3%) 755 (41.8%) 224 (48.5%) 739 (47.8%)

Alcohol intake b

Yes 334 (69.3%) 1074 (70.3%)
0.664

287 (65.2%) 1121 (71.4%)
0.012

293 (63.4%) 1115 (72.1%)
<0.001No 148 (30.7%) 453 (29.7%) 153 (34.8%) 448 (28.6%) 169 (36.6%) 432 (27.9%)

Diabetes b,c

Yes 132 (27.4%) 353 (23.1%)
0.161

136 (30.9%) 349 (22.2%)
0.001

153 (33.1%) 332 (21.5%)
<0.001No 328 (68.0%) 1101 (72.1%) 286 (65.0%) 1143 (72.8%) 288 (62.3%) 1141 (73.8%)

Borderline 22 (6.4%) 73 (4.8%) 18 (4.1%) 77 (4.9%) 21 (4.5%) 74 (4.8%)

Note: a mean (SD), b n (%). c Diabetes variable was defined by whether a person had been told by a doctor or other health professional that they had diabetes or borderline diabetes.
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Table 2. Weighted odds ratio (95% confidence intervals) of low cognitive performance by quartiles of
dietary α-carotene and β-carotene intake.

CERAD W-L AFT DSST

Crude Model I a Model II b Crude Model I a Model II b Crude Model I a Model II b

α-carotene
(mcg/d)

Q1 (≤17.5) Reference Reference Reference Reference Reference Reference Reference Reference Reference
Q2 (17.5 to
≤62.5)

0.85
(0.62, 1.16)

0.79
(0.56, 1.09)

0.89
(0.63, 1.25)

0.85
(0.62, 1.17)

0.83
(0.60, 1.14)

0.95
(0.68, 1.33)

1.00
(0.72, 1.37)

0.93
(0.67, 1.29)

1.26
(0.87, 1.83)

Q3 (62.5 to
≤358)

0.74
(0.55, 1.00)

0.69
(0.50, 0.94) *

0.82
(0.59, 1.14)

0.86
(0.63, 1.16)

0.81
(0.59, 1.10)

0.98
(0.71, 1.35)

0.84
(0.62, 1.13)

0.77
(0.56, 1.06)

1.16
(0.81, 1.65)

Q4 (>358) 0.79
(0.58, 1.09)

0.70
(0.50, 0.97) *

0.84
(0.60, 1.19)

0.57
(0.41, 0.80) *

0.53
(0.38, 0.74) **

0.66
(0.46, 0.94) *

0.80
(0.58, 1.11)

0.73
(0.52, 1.02)

1.15
(0.79, 1.69)

β-carotene
(mcg/d)

Q1 (≤338) Reference Reference Reference Reference Reference Reference Reference Reference Reference
Q2 (338 to
≤819)

0.72
(0.53, 0.98) *

0.67
(0.49, 0.93) *

0.84
(0.60, 1.18)

0.65
(0.47, 0.88) *

0.65
(0.47, 0.89) *

0.80
(0.57, 1.10)

0.64
(0.47, 0.87) *

0.60
(0.44, 0.81) *

0.89
(0.63, 1.26)

Q3 (819 to
≤2222.5)

0.66
(0.50, 0.88) **

0.61
(0.46, 0.83) *

0.81
(0.59, 1.11)

0.51
(0.38, 0.69) **

0.49
(0.36, 0.66) **

0.65
(0.48, 0.89) *

0.45
(0.34, 0.60) **

0.42
(0.31, 0.56) **

0.67
(0.48, 0.83) *

Q4 (>2222.5) 0.60
(0.37, 0.69) **

0.46
(0.33, 0.64) **

0.63
(0.44, 0.90) *

0.52
(0.38, 0.71) **

0.48
(0.35, 0.66) **

0.66
(0.47, 0.94) *

0.42
(0.30, 0.57) **

0.39
(0.28, 0.54) **

0.73
(0.50, 1.06)

a Model I was adjusted for age, gender, race/ethnicity, and BMI. b Model II was adjusted for age, gender,
race/ethnicity, BMI, education, marital status, poverty-income ratio, smoking status, alcohol intake, and diabetes.
* p < 0.05, ** p < 0.01.

In the AFT, the OR values in the crude model of cognitive function with β-carotene
intake in the Q2, Q3, and Q4 groups were 0.65 (95% CI: 0.47, 0.88), 0.51 (95% CI: 0.38, 0.69),
and 0.52 (95% CI: 0.38, 0.71), respectively, compared to those in the Q1 group. Furthermore,
after adjusting for all confounding factors in model II, the OR value in the Q4 group for
dietary β-carotene intake was 0.66 (95% CI: 0.47, 0.94) compared to those in the Q1 group.

In the DSST, the OR values in the crude model of cognitive function with β-carotene
intake in the Q2, Q3, and Q4 groups were 0.64 (95% CI: 0.47, 0.87), 0.45 (95% CI: 0.34, 0.60),
and 0.42 (95% CI: 0.30, 0.57), respectively, compared to those in the Q1 group. In model II,
the OR value in the Q3 group for β-carotene intake was 0.67 (95% CI: 0.48, 0.83) compared
to the Q1 group. No significant difference between the Q4 and Q1 groups were observed
after adjusting for all covariates in the DSST.

There were no significant associations between dietary α-carotene intake and cognitive
function by the CERAD W-L and DSST without or with adjustment for covariates. However,
in the AFT, the OR of the cognitive function decline with α-carotene intake in the Q4 group
was 0.57 (95% CI: 0.41, 0.80) in the crude model and 0.66 (95% CI: 0.46, 0.94) in the fully
adjusted model II.

Stratified analyses were performed to investigate the associations of dietary α-carotene
and β-carotene intake with the cognitive function measured by the CERAD W-L, AFT, and
DSST among the male and female participants (Table 3). Among the male participants,
there were significant associations between dietary α-carotene intake (OR: 0.42, 95% CI:
0.25, 0.71) and β-carotene intake (OR: 0.51, 95% CI: 0.30, 0.85) with the cognitive function
measured by the AFT in model II. Among the female participants, the OR of cognitive
function measured by the CERAD W-L with the Q3 group for α-carotene intake was 0.55
(95% CI: 0.33, 0.91) compared to those in the Q1 group. Furthermore, the OR value of
the cognitive function measured by the CERAD W-L with the Q4 group for β-carotene
intake was 0.37 (95% CI: 0.21, 0.64), while the OR of the cognitive function measured by the
AFT with the Q3 group for β-carotene intake was 0.58 (95% CI: 0.37, 0.91) in model II. No
significant associations were observed between dietary α-carotene and β-carotene intake
with the cognitive function measured by the DSST.
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Figure 2. Dose–response relationships between dietary α-carotene and β-carotene intake and cogni-
tive performance. (a) Restricted cubic spline model of the ORs of the AFT decline with Ln-transformed
dietary α-carotene intake; (b) Restricted cubic spline model of the ORs of the CERAD W-L decline
with Ln-transformed dietary β-carotene intake; (c) Restricted cubic spline model of the ORs of the
DSST decline with Ln-transformed dietary β-carotene intake; (d) Restricted cubic spline model of the
ORs of the AFT decline with Ln-transformed dietary β-carotene intake. All models were adjusted for
age, gender, race/ethnicity, BMI, education, marital status, poverty-income ratio, smoking status,
alcohol intake, and diabetes.

Table 3. Weighted odds ratio (95% confidence intervals) of low cognitive performance by quartiles of
dietary α-carotene and β-carotene intake, stratified by gender.

CERAD W-L AFT DSST

Crude Model II a Crude Model II a Crude Model II a

Male
α-carotene (mcg/d)

Q1 (≤17.5) Reference Reference Reference Reference Reference Reference

Q2 (17.5 to ≤62.5) 0.97
(0.64, 1.47)

1.02
(0.66, 1.60)

0.87
(0.57, 1.33)

0.96
(0.61, 1.51)

1.04
(0.69, 1.57)

1.31
(0.81, 2.12)

Q3 (62.5 to ≤358) 0.95
(0.64, 1.42)

1.10
(0.71, 1.69)

0.84
(0.55, 1.27)

1.00
(0.64, 1.56)

0.69
(0.46, 1.04)

0.98
(0.61, 1.59)

Q4 (>358) 0.89
(0.59, 1.34)

0.98
(0.62, 1.53)

0.37
(0.23, 0.60) **

0.42
(0.25, 0.71) **

0.62
(0.40, 0.96) *

0.89
(0.54, 1.47)

β-carotene (mcg/d)
Q1 (≤338) Reference Reference Reference Reference Reference Reference

Q2 (338 to ≤819) 0.84
(0.55, 1.26)

1.05
(0.67, 1.63)

0.72
(0.47, 1.10)

0.95
(0.60, 1.50)

0.61
(0.40, 0.92) *

0.94
(0.58, 1.51)

Q3 (819 to ≤2222.5) 0.79
(0.54, 1.17)

0.99
(0.65, 1.51)

0.57
(0.38, 0.85) **

0.73
(0.47, 1.13)

0.46
(0.31, 0.68) **

0.68
(0.43, 1.07)

Q4 (>2222.5) 0.71
(0.46, 1.08)

0.94
(0.59, 1.51)

0.41
(0.25, 0.65) **

0.51
(0.30, 0.85) **

0.35
(0.22, 0.55) **

0.64
(0.38, 1.09)
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Table 3. Cont.

CERAD W-L AFT DSST

Crude Model II a Crude Model II a Crude Model II a

Female
α-carotene (mcg/d)

Q1 (≤17.5) Reference Reference Reference Reference Reference Reference

Q2 (17.5 to ≤62.5) 0.74
(0.45, 1.21)

0.70
(0.41, 1.20)

0.85
(0.52, 1.39)

0.94
(0.56, 1.57)

1.01
(0.60, 1.71)

1.22
(0.68, 2.23)

Q3 (62.5 to ≤358) 0.61
(0.38, 0.97) *

0.55
(0.33, 0.91) *

0.91
(0.58, 1.43)

0.98
(0.60, 1.58)

1.15
(0.71, 1.86)

1.39
(0.83, 2.41)

Q4 (>358) 0.72
(0.44, 1.17)

0.66
(0.39, 1.13)

0.86
(0.53, 1.40)

0.99
(0.59, 1.65)

1.17
(0.71, 1.95)

1.57
(0.87, 2.83)

β-carotene (mcg/d)
Q1 (≤338) Reference Reference Reference Reference Reference Reference

Q2 (338 to ≤819) 0.59
(0.37, 0.94) *

0.64
(0.39, 1.06)

0.58
(0.37, 0.91) *

0.65
(0.40, 1.04)

0.67
(0.43, 1.06)

0.83
(0.50, 1.40)

Q3 (819 to ≤2222.5) 0.55
(0.36, 0.83) **

0.63
(0.40, 1.00)

0.46
(0.31, 0.70) **

0.58
(0.37, 0.91) *

0.45
(0.30, 0.69) **

0.66
(0.41, 1.08)

Q4 (>2222.5) 0.33
(0.20, 0.54) **

0.37
(0.21, 0.64) **

0.63
(0.41, 0.97) *

0.81
(0.50, 1.30)

0.50
(0.32, 0.79) **

0.83
(0.49, 1.41)

a Model II was adjusted for age, race/ethnicity, BMI, education, marital status, poverty-income ratio, smoking
status, alcohol intake, and diabetes. * p < 0.05, ** p < 0.01. Figure 2 presents the results of the restricted cubic spline
analysis. For the dietary α-carotene intake, there was a linear dose-response relationship between Ln-transformed
α-carotene and the AFT decline. Ln-transformed dietary β-carotene intake was significantly associated with a
decreased probability of CERAD W-L decline, showing a reduced possibility of AFT decline and DSST decline
(all nonlinear p > 0.05). However, when the Ln-transformed dietary β-carotene intake reached 8.7 mcg/day,
the relationship was no longer significant. Furthermore, there were no significant associations between dietary
α-carotene intake and cognitive function assessed by the CERAD W-L and DSST, and the results are not shown in
the following graph.

4. Discussion

With the growing aging population, dementia has become a worldwide problem [4].
There are many nutritional factors related to cognitive decline [31]. High-fat and high-sugar
diets affect neurogenesis and neuroplasticity by decreasing hippocampal brain-derived
neurotrophic factor (BDNF) [32,33], which is a vital mediator of long-term memory forma-
tion. Oxidative stress is another necessary factor in cellular injury and the activation of
neuroinflammation during the aging process [34]. A previous study indicated that supple-
mentation with folic acid improved cognitive function in older people [35]. In an animal
experiment, folates along with vitamins B6 and B12 were associated with DNA methylation
in neurons [36]. In a randomized, double-blind, placebo-controlled, multicenter trial, a diet
with probiotic supplements could shift gut microbiota status, which was inversely associ-
ated with BDNF levels in the blood among older people [37]. To date, some studies have
examined the associations of α-carotene and β-carotene with cognitive function. However,
to our knowledge, most of the previous studies have mainly focused on the plasma level of
carotenes with cognitive function [15,38,39]. Since the plasma concentrations are generally
maintained within a certain range, it may be difficult to explore the effect of actual intake.
Creatively, our study explored the associations of dietary α-carotene and β-carotene intake
with cognitive performance using the CERAD W-L, AFT, and DSST.

In this research, we found that dietary α-carotene and β-carotene intake were inversely
associated with cognitive function decline. β-carotene intake showed negative relationships
with cognitive performance in all three cognitive function tests, while α-carotene intake
was only negatively associated with cognitive performance in the ATF. In the RCS results,
after adjusting for all potential covariates, there were approximately linear dose-response
relationships of β-carotene intake with CERAD W-L, AFT, and DSST decline. In previous
studies, we found that a high plasma level of α-carotene in patients was associated with
higher cognition function scores [15]. A randomized trial study of 4052 participants re-
ported that the participants had a higher global score in the β-carotene intake group than
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in the control group. In the verbal memory test, men with durable beta carotene replen-
ishment also had significantly better scores than the control group [40]. Another survey
of 298 participants also found that serum β-carotene was significantly associated with
cognitive function [44]. Perrig et al. found that a higher β-carotene plasma level was associ-
ated with better memory performance in 442 participants aged 65–94 years [41]. However,
this relationship in the DSST changed when the Ln-transformed dietary β-carotene intake
exceeded 8.7 mcg/day, indicating that dietary β-carotene intake may not have positive
effects on cognitive function decline. In a meta-analysis, an overdose of β-carotene intake
enhanced the mortality of cancers and other diseases [42].

The mechanism of the effect of dietary carotene intake on cognitive decline remains
unclear. In a previous paper, the progression of cognitive decline was related to vascular
diseases [43]. Dietary carotene intake reduced the progression of atherosclerosis, stroke, and
other oxidative impairments, which are risk factors for cognitive decline [43]. Carotenes
are mainly obtained through daily food intake [15], so another hypothesis is related to the
antioxidant function of plasma α-carotene and β-carotene through dietary intake, which
can promote the formation of gap junctions between cells and can be converted to vitamin
A [16]. In previous studies, vitamin A had positive effects on human health, including
cognitive function and neurodevelopment [39,45,46]. In contrast, long-term vitamin A
deficiency could cause cognitive function decline by affecting the nuclear receptors RXR
and RAR (mainly present in the hippocampus, cortex, and caudate) to initiate target gene
transcription [47]. Furthermore, a survey of 2983 participants indicated that carotenoid-
rich dietary patterns containing α-carotene and β-carotene were associated with better
cognitive function consequences in older people [38]. In addition, lutein and zeaxanthin, as
parts of carotenoids, can also improve cognitive function [48,49] in either older or younger
generations [50,51]. Moreover, dietary foods containing α-carotene and β-carotene are
full of vitamin E, selenium, and flavonoids [52] which have benefits on cognitive function
decline [53–55]. Thus, we cannot exclude the effects of other nutrients in food on cognitive
decline without laboratory experiments.

We found differences in cognitive function between genders in our study, which may
be related to hormones. A previous study found that levels of plasma β-carotene in men
were lower than in women in each tertile of daily intake of fruits and vegetables [56]. In a
previous animal experiment, the efficiency of β-carotene conversion to vitamin A in female
rats was higher than that in male rats and the difference was related to hormone-regulated
genes [57].

This study has several advantages. First, we used a large-scale sample of older adults
in the United States. Second, the quality of data in the NHANES could be guaranteed in
terms of survey methods and quality control. In addition, we controlled a wide range of
potential confounders to estimate the associations of dietary α-carotene and β-carotene
intake with cognitive function decline. Our study also contains several limitations. First,
due to the cross-sectional nature of the study, we cannot confirm the causal relationships
between dietary α-carotene and β-carotene intake and cognitive function. Moreover,
although we controlled basic social confounding of carotenes and cognitive function,
not all possible confounding factors were included. Furthermore, since the functions
of dietary α-carotene on the CERAD W-L and DSST were not observed, further studies
are still needed. Finally, the levels of dietary α-carotene and β-carotene intake were
collected through the questionnaire survey rather than the measurement in the laboratory.
An RCT study combined with laboratory confirmations is still needed to explore more
accurate relationships of dietary α-carotene and β-carotene intake with cognitive function
in the future.

5. Conclusions

In this study, our results reflected that dietary α-carotene and β-carotene intake
might have inverse effects on cognitive function decline in older people. However, the
excessive intake of dietary α-carotene and β-carotene may be a problem that needs special
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attention. Further longitudinal studies and laboratory confirmations are required to confirm
these results.
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