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Abstract: Vitamin C (VC) intakes, serum VC, fasting plasma glucose, and A1c levels of 25,206 adult
men and 26,944 adult women with 6807 type 2 and 428 type 1 diabetes from the NHANES database
between 1999 and 2018 were analyzed. Our hypothesis is that low VC intake and serum VC level may
be a health risk for US adults with diabetes. Analyses revealed total VC intake below the estimated
average requirement (EAR) increased from 38.1% to 46.5% between 1999–2018. VC intake and serum
VC levels were inversely associated with markers of pre-diabetes and type 2 diabetes, namely, fasting
plasma glucose and A1c levels. Risks of type 2 diabetes increased in adults with VC intake below
the EAR and with no VC supplement (odds ratio 1.20, 95% CI 1.1–1.3 and 1.28, 95% CI 1.18–1.40,
respectively). Median survivor years of diabetic adults with lower and deficient serum VC were
shorter than that of diabetic adults with normal serum VC. Mortality risks of type 2 diabetes with
low VC intake and/or deficient serum VC levels were elevated compared to those with adequate VC
intake and normal serum VC (HR 1.25, 95% CI 1.05–1.49 and 1.84, 95% CI 1.10–3.08, respectively).
Observation of declining VC intake and deleterious consequences of low serum VC in US adults with
diabetes suggests encouragement of VC intake, including VC supplementation of 500–1000 mg/day,
may be beneficial for pre-diabetic and diabetic US adults.

Keywords: decreasing VC intake; low serum VC level; risk for US diabetic adults

1. Introduction

Prevalence of prediabetes and diabetes continues to rise in the US and worldwide [1,2].
Approximately 10.5% of the US adult population is prediabetic and approximately 34.5%
of the US adult population is diabetic [1]. Currently, diabetes is the seventh leading cause
of death in the US. It is also a contributing factor to cardiovascular disease, the primary
cause of death in adults in the US according to the US Centers for Diseases Control and
Prevention (US CDC) [3].

Type-2 diabetes is associated with lower circulating vitamin C (also known as l-ascorbic
acid, VC) levels compared to adults without diabetes [4,5]. Low serum VC in people with
diabetes may be the result of food choice and/or restricted food intake [6]. Lower serum
VC in people with diabetes may also result from the increased oxidative stress associated
with the disease process. VC deficiencies in people with pre-diabetes may be indicative of
the risk of developing diabetes in the future [5,7–9].

The associations between VC intake and plasma glucose levels as a marker for diabetes
risk is debated as is the potential of VC supplements as a possible marker or remedy for
people with diabetes [4,5], though the many functions of adequate VC intake for people
with or without diabetes have been recognized [10–12]. For example, VC is required for
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the biosynthesis of collagen and L-carnitine and is essential for the repair of tissue and
the enzymatic production of some neurotransmitters [13,14]. VC also functions as an
intracellular antioxidant [15,16]. Furthermore, VC can enhance chemotaxis, phagocytosis,
and generation of reactive oxygen species in its’ function in the immune system [17]. More
specifically, VC activity enhances differentiation and proliferation of B- and T-cells, likely
because of its gene-regulating effects [18]. VC regenerates other antioxidants including
alpha-tocopherol (vitamin E) and boosts the absorption of folate [18,19].

VC must be obtained from food and supplements [20] as humans are among the few
mammalian species unable to synthesize VC. Most healthcare professionals recommend
diets high in fruits and vegetables for prediabetic and diabetic patients, in part due to the an-
tioxidants, including vitamin C in these foods [21]. Nevertheless, population-based studies
on the roles of VC intake on diabetes and other complications are inconclusive [22,23].

No examination of the potential association of VC levels or intake, ages of diabetes
onset, and mortality risk in diabetic adults exist. The current research investigates possible
associations between VC intake, circulating VC levels, physiological markers of prediabetes
and diabetes, and their possible links to mortality risk in US adults [1]. More specifically,
we evaluated VC intake parameters as indicators of diabetes development, and mortality
risk in the diabetic and nondiabetic US population over a 19-year period. This study is the
first to link the age of diabetes onset and mortality risk of the US diabetic population to VC
intake. It is also the first-time mortality risks of various levels of VC supplemental intake
are compared.

2. Research Design and Methods
2.1. Data

NHANES is a database intended for assessing the health and nutritional status of
adults and children in the US, administered by the NCHS of the US CDC [24]. The
population was sampled with a complex, stratified, and multistage probability cluster
sampling design to provide data that are nationally representative of the civilian, non-
institutionalized US population. Participants provided written informed consent before
participation. NHANES data collection was reviewed and approved by the NCHS ethics
review board [25]. The NHANES quality assurance and quality control protocols meet
the 1988 US Clinical Laboratory Improvement Act mandates.

Mortality records of 52,150 adults (25,206 men and 26,944 women, aged 18 to 85 years)
participants of the National Health and Nutrition Examination Survey (NHANES) of
the US Centers for Disease Control and Prevention (CDC) between 1999 and 2018 were
obtained [26]. A total of 35,550 participants without mortality data (primarily people
under 18 years old or adults with missing death-related information) and 428 participants
who perished in an accident were excluded [26]. Mortality was ascertained by National
Center for Health Statistics (NCHS) through a probabilistic match between NHANES
participants and National Death Index (NDI) death certificate records [27]. Participants
who were not matched with death records were considered to be alive through the CDC’s
follow-up period before 31 December 2019 [27].

Daily dietary and supplemental VC intake and glycohemoglobin A1c of the mortality
tracked cohort between 1999 and 2018 were obtained from NHANES [24]. Dietary and
supplemental VC of participants consumed in the previous 24 h before the Mobile Exami-
nation Center (MEC) interview, were estimated by summing the amount of food and from
supplements calculated to have been consumed in the previous 24 h. Dietary interviews
were administered by a trained dietary interviewer in the mobile examination center (MEC)
of NHANES. Fasting plasma glucose data of about half of this cohort (24,468) were also
obtained. Serum VC data of 7246 adult men and 7736 adult women were obtained only
for the period of 2003–2004, 2005–2006, 2017, and 2018 because they were not available for
other years. Serum VC and plasma glucose were assayed at the NHANES laboratory of the
US CDC. Detailed laboratory procedures for this assay are published elsewhere [28].
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Age, sex, race, smoking status, marital status, education, income to poverty ratio,
interview, and MEC sample weights were obtained from available demographic data [24].
The demographic data were part of the interview questions administered during the MEC
interview. The body mass index (BMI) of participants was obtained from the BMI files. Clas-
sification of BMI status (BMI class) followed the CDC’s criteria [29]: <18.5 was considered
underweight, 18.5 and <25 normal, ≥25 overweight, 30 and <35 obese I, 35 and <40 obese
II, and ≥40 obese III. Diagnosed diabetes status of participants and age of diabetes diag-
nosis were obtained from the diabetes profile file. A participant was considered to have
a diabetic condition only when the answer to the question “Doctor told you have dia-
betes?” was “yes” or the hemoglobin A1c level of the participants was 6.5% or above when
the answer to the diabetes question was “no”. Smokers were defined as the participants
who answered “yes” to the question “have you ever smoked 100 or more cigarettes in
your lifetime?” All participants who did not have a “yes” answer to this question were
considered non-smokers for this paper. A participant was defined as married only if the
marriage status of the participant was currently married. These questions surveyed were
asked before the physical examination, in the home, using the Computer-Assisted Personal
Interviewing-CAPI (interviewer administered) system. Percentage characteristics of the
demographic and variates data used in the analyses are listed in Table 1.

Table 1. Mean percentages of demographic and covariates data and their 95% confidence interval
(inside parentheses).

Men College Education Married Smoke

Mexican 52.0% (50.7–53.3%) 28.4% (27.2–29.6%) 51.9% (50.6–53.1%) 35.1% (33.8–36.3%)

Hispanic 47.0% (45.2–48.8%) 44.6% (42.8–46.5%) 46.6% (44.8–48.4%) 35.6% (33.9–37.4%)

White 48.6% (47.8–49.4%) 62.5% (61.8–63.3%) 58.1% (57.3–58.9%) 48.1% (47.3–48.9%)

African 44.6% (43.6–45.6%) 49.0% (47.9–50.0%) 32.2% (31.2–33.1%) 38.8% (37.8–39.8%)

Others 48.2% (46.3–50.2%) 66.7% (64.8–68.5%) 56.4% (54.4–58.3%) 35.8% (33.8–37.8%)

mean 48.3% (47.7–48.9%) 57.5% (56.9–58.0%) 53.9% (53.3–54.5%) 44.5% (43.9–45.0%)
1 Diet VC below EAR Taking VC supply. With A1c measured With fasting glucose measured

Mexican 45.0% (43.8–46.3%) 22.3% (21.3–23.4%) 97.0% (96.6–97.4%) 46.9% (45.6–48.2%)

Hispanic 44.4% (42.5–46.2%) 26.8% (25.2–28.5%) 96.5% (95.8–97.1%) 46.9% (45.1–48.7%)

White 40.9% (40.1–41.7%) 41.4% (40.6–42.1%) 97.1% (96.9–97.4%) 47.3% (46.5–48.1%)

African 46.2% (45.2–47.2%) 25.2% (24.3–26.1%) 92.7% (92.1–93.2%) 44.8% (43.8–45.8%)

Others 41.7% (39.7–43.7%) 36.2% (34.3–38.1%) 95.3% (94.5–96.1%) 46.2% (44.2–48.2%)

mean 42.1% (41.5–42.7%) 36.8% (36.2–37.4%) 96.5% (96.3–96.7%) 46.9% (46.3–47.5%)
2 Serum VC < 0.2 With type 1 diabetes With type 2 diabetes Deceased

Mexican 4.0% (3.1–5.1%) 0.3% (0.2–0.5%) 11.8% (11.1–12.6%) 4.4% (4.0–4.8%)

Hispanic 2.7% (1.6–4.3%) 0.5% (0.3–0.7%) 11.1% (10.1–12.3%) 5.1% (4.4–5.9%)

White 7.8% (7.1–8.6%) 0.6% (0.5–0.7%) 8.9% (8.5–9.4%) 11.1% (10.8–11.5%)

African 5.6% (4.8–6.5%) 0.9% (0.7–1.1%) 14.2% (13.5–14.9%) 9.7% (9.2–10.3%)

Others 5.1% (3.8–6.9%) 0.3% (0.2–0.6%) 12.2% (11.0–13.5%) 5.5% (4.7–6.4%)

mean 6.8% (6.2–7.3%) 0.6% (0.5–0.6%) 10.1% (9.8–10.4%) 9.7% (9.4–10.0%)

Note: 1 Diet VC below EAR: dietary VC intake below the estimated average requirement (EAR) levels of VC
intake-75 mg/day for adult men and 60 mg/day for adult women. 2 Serum VC < 0.2: Percentage of serum VC
below 0.2 mg/dL for years 2003–2004, 2005–2006, 2017 and 2018. For all others, the data are the same sample size
as the dietary VC intake data and are between 1999 and 2018.
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2.2. Statistical Methods

Statistical analyses including weighted means, odds ratios (ORs), hazard ratios (HRs),
survival time, and 95% confidence intervals of all data were conducted in Stata (SE/17)
using its Survival Analyses and Survey Data Analysis tool. Respective sample weights
were used to account for differential non-response and/or non-coverage, to adjust for
planned oversampling of some groups, and to adjust for uneven representation of days
of the week. Because the estimated average requirement (EAR) levels of VC intake
are 75 mg/day for adult men and 60 mg/day for adult women [30], four categories of
total VC intake (dietary + supplement) were defined in this study. They were: adequate VC
intake (≥75 and ≥60 mg/day for men and women), VC intake below EAR (<75 for men
and <60 mg/day for women), low VC intake (<75 to 30 for men and <60 to 20 mg/day for
women), and very low VC intake (<30 for men and <20 mg/day for women). Total VC
intake or VC intake in this paper refers to dietary VC plus supplement VC intakes while
dietary VC refers to only VC intake from food and beverages.

Serum VC concentrations less than 0.2 mg/dL, or the level at which symptoms of
scurvy may appear were defined as serum VC deficient, while the serum VC concentra-
tions of 0.2–0.4 mg/dL were defined as low serum VC in this paper following US CDC’s
practice [31]. Arithmetic means of dietary, total VC, and supplemental VC intake and
serum VC and proportion of adults who took VC supplements, with low and very low
VC intakes, with deficient and low serum VC concentrations were calculated for each of
the four groups: men and women with and without diabetes. In addition, dietary and
supplemental VC intake per 24 h, A1c and fasting plasma glucose were calculated for each
of the respective BMI classes for both men and women.

ORs of diabetes were analyzed using binary logistic regression. The dependent
variable was diabetes status. The independent variables included two or three levels of
VC intake, three levels of serum VC and five levels of VC supplement respectively; other
independent variables included ages, marital status, education (without college versus
with college and above), sex, races, BMI, and smoking status. HRs of all-cause mortality
excluding accidental death were analyzed using Cox proportional hazards models. The
outcome for analysis of HRs (failure variables) was all-cause mortality. The times to event
(time variables) were the survival time. The treatments were the two VC intake levels, three
serum VC levels, and five levels of VC supplement. The survival time (time to event) is the
addition of the age of a participant during screening time and the follow-up years of the
participant from baseline examination to the date of death or through 31 December 2019,
the end of the tracking period following prior practice [32,33]. Sex, marital status, race,
educational level, smoking, BMI, A1c, and ratio of family income to the poverty line were
the other independent variables [32]. The inclusion of time-dependent variables in the
initial Cox models confirmed that the proportional hazards assumption was met for models
of type 2 diabetes and non-diabetes [34,35]. Because only adults were included in the
analyses and most of the NHANES participants survived through 31 December 2019, the
relative differences in the median survivor ages of groups, or the difference in expected life
expectancy should be viewed only as an approximate estimation.

All analyses were run by using the STATA sampling weight function to account for
the complex sample design [36]. A p-value < 0.05 indicated statistical significance.

3. Results
3.1. Statuses of VC Intake, Serum VC Level, Relations with Fasting Glucose and A1c

6807 type 2 and 428 type 1 diabetes were identified among the 52,150 participants
between 1999 and 2018 using the treatment algorithm of Mosslemi et al. [37]; this method
examines the age of diabetes diagnosis, measures of insulin intake status, as well as
duration, and the time difference between the diagnosis and insulin intake. These analyses
revealed the prevalence of type 1 diabetes at 6.4% (95% CI 5.6–7.4%) of the total diabetic
population while type 2 diabetes consisted of 93.6% (95% CI 92.6–94.4%) of the total
diabetic population. Interestingly, 17.8% (95% CI 16.6–19%) of the adult participants with
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A1c greater than 6.5% did not report a “yes” answer to the question “Doctor told you
have diabetes”.

Dietary intake of VC in adults with type 2 diabetes (mean 75.5, 95% CI 72.5–78.4 mg/day)
was significantly lower than in adults without diabetes (84.6, 95% CI 83.4–85.7). Dietary
VC intake in type 1 diabetes was not significantly different from adults without diabetes
(Table 2). Supplementary VC intake was lower in women with type 2 diabetes (90.8,
95% CI 76.9–104.7 mg/day) than in women without diabetes (94.6, 95% CI 89–100.2 mg/day),
but these differences did not reach statistical significance. Serum VC levels were sig-
nificantly lower in adults with type 2 diabetes (0.84 95% CI 0.81–0.87 mg/dL), but not
significantly lower in adults with type 1 diabetes (0.92 95% CI 0.83–1.02) than in adults
without diabetes (0.94 95% CI 0.93–0.96 mg/dL).

Table 2. Dietary VC and supplementary VC intake of people with type 1 and type 2 diabetes and
without diabetes 1.

Men Women

Mean L95% U95% Mean L95% U95%

dietary VC (no-supplement) intake (mg/day)

No-diabetes 91.6 89.7 93.5 78.1 76.7 79.5

Type 1 85.1 68.6 101.5 83.2 67.9 98.5

Type II 80.7 76.1 85.3 70.2 66.9 73.5

supplementary VC intake (mg/day)

No-diabetes 83.1 77.9 88.3 94.6 89.0 100.2

Type 1 100.8 42.7 159.0 75.8 44.8 106.8

Type II 97.9 78.3 117.6 90.8 76.9 104.7

serum VC level (mg/dL)

No-diabetes 0.86 0.84 0.87 1.03 1.01 1.04

Type 1 0.87 0.74 1.01 0.96 0.82 1.10

Type II 0.79 0.75 0.84 0.88 0.84 0.92

fasting plasma glucose (mg/dL)

No-diabetes 100.4 100.1 100.8 96.4 96.1 96.7

Type 1 220.2 189.1 251.3 193.5 166.5 220.5

Type II 164.4 160.0 168.7 152.1 148.4 155.9

Glycohemoglobin A1c (%)

No-diabetes 5.4 5.3 5.4 5.4 5.3 5.4

Type 1 8.5 8.0 9.0 7.9 7.5 8.4

Type II 7.5 7.4 7.6 7.3 7.2 7.4
1 Note: dietary VC and supplementary VC were for the years 1999–2018, while serum VC, fasting plasma glucose,
and A1c were for the years 2003–2006, and 2017–2018. L95% U95%: Lower 95% and upper 95% confidence levels.

Both dietary VC and serum VC decreased as BMI increased (Table 3). Fasting glucose
and A1c level increased as BMI increased (Table 3). Both dietary VC and serum VC levels
were inversely correlated with fasting glucose and A1c levels.
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Table 3. Ranges of dietary (no supplement) VC, serum VC, glucose, and A1c of respective BMI classes
and their correlations.

BMI Range Diet. VC (mg/Day) SerVC (mg/dL) Fasting Glucose (mg/dL) A1c (%)

Underweight <18.5 87.3 (70.7–103) 0.93 (0.81–1.05) 93.7 (90.6–96) 5.2 (5.1–5)

Normal weight 18.5–24.9 86.8 (83.1–90) 0.98 (0.95–1) 97.7 (96.3–99) 5.3 (5.2–5)

Pre-obesity 25.0–29.9 86.3 (82.9–89) 0.93 (0.9–0.95) 103.9 (102.5–105) 5.4 (5.4–5)

Obesity class I 30.0–34.9 77.5 (73.2–81) 0.83 (0.8–0.86) 108.8 (106.7–110) 5.6 (5.6–5)

Obesity class II 35.0–39.9 72.9 (66.8–79) 0.75 (0.71–0.8) 113.4 (110.3–116) 5.8 (5.7–5)

Obesity class III ≥40 76.5 (68.6–84.4) 0.72 (0.66–0.77) 118.4 (114.6–122.2) 5.9 (5.8–6.1)
1 Correlations with diet VC 1 0.93 * −0.89 * −0.89 *

Correlations with serum VC 1 −0.94 * −0.96 *

Note: 1 Correlation with * indicates correlation being significant with a 95% confidence interval. Data were for the
years 2003–2006, and 2017–2018.

Figure 1 shows the percentage of men and women with VC intake below the EAR.
The analyses indicated that 38.1% (95% CI 36.2–40.0%) of the US adult population with
total VC intake below the EAR from 1999–2000 (75 mg/day for men and 60 mg/day for
women). The percentage of VC intake below the EAR rose to 46.5% (95% CI 44.4–48.6%) in
the final two years of the examined data, namely, 2017–2018 (corresponding to an increase
of 22.1% (95% CI 21.6–22.5%) from 1999 to 2018). The rise was more significant in men
than in women (Figure 2). The percentage of men below the VC EAR was relatively more
consistent across the three conditions, no-diabetes, type I diabetes, and type 2 diabetes (45%,
47.9%, and 45.8%, respectively), than for women (41.2%, 33.4%, and 38.4%, respectively)
(Figure 1). Overall, 63.2% (95% CI 62.6–63.8%) of the US adult population did not take any
VC supplements between 1999 and 2018. Only about 33% and 35% of diabetic and non-
diabetic men, and 35% and 40.6% of diabetic and non-diabetic women took VC supplements.
The data in Table 4 also reveal the percent of men and women considered VC-deficient
(VC level below 0.2 mg/dL). For men, a similar percent of non-diabetics and type 2
diabetics were VC-deficient (8.2% vs. 8.4%) while for women, 5.2% of non-diabetics were
VC-deficient and 7.7% of type 2 diabetics were VC-deficient.

Table 4. Odds ratios of VC intake, VC supplement use, and age percentiles of type 2 diabetes
diagnoses of US adults.

1 Odds Ratio L95% U95%

With adequate VC intake vs. VC intake below EAR and with no VC supplement vs. with VC supplement

VC intake below EAR 1.20 1.10 1.30

with no VC supplement 1.28 1.18 1.40

With ranges of VC supplement vs. no VC supplement

0–499.9 mg/day 0.78 0.71 0.86

500–999.9 mg/day 0.79 0.66 0.96

1000–1999.9 mg/day 0.64 0.49 0.85

≥2000 mg/day 1.32 0.68 2.56

Ages (years) of type 2 diabetes diagnoses of US adults vs. their total VC and VC supplement intake

Percentile 25th 50th 75th

with adequate VC intake 38 50 60

with VC intake below EAR 37 49 60

with suppl VC 40 51 60

without suppl VC 36 49 60
1 Note: Odds ratio of type 2 diabetes with VC intake below EAR (for men < 75 mg/day, for women < 60 mg/day)
to that with adequate VC intake as references; those with no VC supplement to that with VC supplement as
references. Odds ratio larger than 1 indicates elevated risk and smaller than 1 indicates less risk.
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3.2. Ages of Type 2 Diabetes Diagnoses vs. Dietary VC and Supplement VC Intake

Table 4 shows the odds ratio for the onset of type 2 diabetes among people with total
VC intake below the EAR and without VC supplement were significantly higher than for
people with VC intake above the EAR (both male and female L95% and U95% of HRs > 1).
In addition, odds ratios greater than 1 for the onset of type 2 diabetes were observed for
BMI (1.09, 95% CI 1.09–1.10) and age (1.057, 95% CI 1.055–1.059). Educational level resulted
in an odds ratio of less than 1 (0.75, 95% CI 0.69–0.82). Also, in Table 4 are data indicating
the median age of diabetes diagnosis for adults below the EAR VC intake was 1 year
earlier than adults with VC intakes above the EAR (49 years old compared to 50 years
old) though the confidence intervals for these measures show considerable overlap. The
largest difference in the onset of diabetes diagnosis was two years, with the median age
of diabetes being diagnosed for adults without VC supplement use was two years earlier
than for adults with VC supplement use (49 vs. 51 years old, Table 4). The difference in the
onset of diabetes diagnosis for adults with normal serum VC was 7 and 8 years later than
for adults with low and deficient serum VC (Figure 3).

3.3. Ranges of Optimal VC Supplement Use and Mortality Risk

For adults with type 2 diabetes, VC supplements decreased the odds ratios of diabetes
diagnosis; taking 0–500, 500–1000, 1000–2000 mg/day were each less than 1 using the group
of type 2 diabetes taking no VC supplement as reference (Table 4). Perhaps indicating a dose-
response curve for VC supplementation, taking more than 2000 mg/day of VC appeared
to increase the odds ratio of type 2 diabetes diagnosis (odds ratio 1.32, 95% CT 0.68–2.56).
The hazard ratios were above 1.0 for low VC without VC supplementation with adequate
VC with supplementation as well as low VC with normal VC as the reference (Table 5).

The hazard ratios (Table 5) of all-cause mortality of the four VC supplement amounts:
0–499.9 (HR 0.83, 95% CI 0.77–0.89), 500–999.9 (0.67, 95% CI 0.59–0.76), 1000–1999.9 (0.95,
95% CI 0.78–1.16) and ≥2000 mg/day (0.87, 95% CI 0.58–1.32) were each less than 1
using the group with no VC supplement as the reference. The HR values being lower
than 1 here indicate that vitamin C supplement is generally beneficial. A VC supplement
of 500–1000 mg/day might be an optimal range of VC supplement use for adults in regard
to potential diabetes susceptibility.
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Figure 3. (a), median ages of type 2 diabetes diagnosis in US adults with normal, low, and deficient
serum VC (>0.4, 0.4–0.2, and <0.2 mg/dL). Vertical bars are standard errors and bar top labels are
age years. (b), shortened median survivor years of type 2 diabetic US adults with low and deficient
serum VC from those with normal serum VC. Shortened 25th percentile survival years were 6.9
and 13.4 years and the 75th percentile survival years were 4.3 and 2.2 years respectively.

Table 5. HRs 1 of all-cause mortality of adults with total VC intake below the EAR, no VC supplement,
with low and deficient serum VC for US adults with and without diabetes.

Low Total VC and No VC Supplement with Adequate VC Intake and VC
Supplement as References 1

Low and Deficient Serum VC with Normal Serum VC
as Reference 2

VC intake Haz. Ratio L95% U95% Serum VC Haz. Ratio L95% U95%

Non-diabetes Non-diabetes

VC intake below EAR 1.28 1.18 1.38 low serum VC 1.55 1.21 1.98

with no VC suppl 1.24 1.15 1.34 VC deficient 2.19 1.73 2.76

Type 1 diabetes Type 1 diabetes

VC intake below EAR 0.97 0.65 1.45 low serum VC 1.27 0.50 3.20

with no VC suppl 1.25 0.86 1.81 VC deficient 2.78 0.80 9.73

Type 2 diabetes Type 2 diabetes

low VC intake 1.11 0.95 1.29 low serum VC 1.61 1.17 2.20

very low VC intake 1.25 1.05 1.49 VC deficient 1.84 1.10 3.08

with no VC suppl 1.20 1.05 1.38

Note: 1 HRs of non-diabetes, type 1 and type 2 diabetes, those with adequate VC intake (for men ≥ 75 mg/day,
for women ≥ 60 mg/day) or 2 normal serum VC (>0.4 mg/dL) were used as references. Low serum VC: serum
VC level 0.2–0.4 mg/dL and VC deficient: serum VC < 0.2 mg/dL.
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3.4. Mortality Risk of Adults with and without Diabetes and with Different VC Levels

Among 52,150 participants eligible for mortality tracking between 1999 and 2018,
7720 US adults were deceased. Among these deceased, 252 adults had type 1 diabetes
and 1851 adults had type 2 diabetes (Table 1). The non-Hispanic white population had the
highest percentage of diabetes-related deaths (Table 1). The risk of all-cause mortality from
HRs for adults with type 2 diabetes and without diabetes was significantly higher in adults
with lower VC intake than for adults with adequate VC intake (Table 5). The HRs were
significantly higher for adults with deficient (<0.2 mg/dL) serum VC levels than for adults
with normal serum VC levels (>0.4 mg/dL) (Table 5). For adults with type 1 diabetes, the
HRs were higher, but not statistically higher, for adults with low VC intake than for adults
with adequate VC intake. Marriage, high income, college and above education, and being a
woman were important factors for diabetes risk (all their upper and lower 95% CIs of HRs
were less than 1) influencing life expectancy. Smoking status and African American heritage
were factors decreasing life expectancy in our sample. Higher A1c levels were associated
with decreased mortality risk (HR: 0.70, 95% CI 0.63–0.78) for adults without diabetes while
a higher A1c level was associated with increased mortality risk for adults with diabetes
(HRs: 1.28, 95% CI 1.16–1.40 for Type 1 and 1.17, 95% CI 1.03–1.33 for Type 2 diabetes).

The median survival times were shorter for adults with diabetes than for adults
without diabetes. The median survival years of adults with type 1 or type 2 diabetes
after diagnosis was 10 years (25th and 75th percentile differences: 6.2 and 15.2 years)
and 2.75 years (25th and 75th percentile differences: 2.4 and 2.8 years). Among adults with
diabetes, low and deficient serum VC significantly reduced median survival time compared
to diabetic adults with normal serum VC (Table 6).

Table 6. Survival years of 25th, 50th (median), and 75th percentiles of US adults vs. their total VC
intakes and serum VC levels.

25th 50th 75th Differences of the 50th Percentile Survival
Years of Varied VC with Normal VC

Survival years of non-diabetes vs. serum VC
1 Normal S. VC 83.1 88.7 92.7 0.0

Low S. VC 79.3 85.0 90.8 3.7

VC deficient 72.7 83.3 88.3 5.3

Survival years of type 1 diabetes vs. serum VC

Normal S. VC 70.1 81.8 87.6 0.0

Low S. VC 62.3 77.2 83.6 4.7

VC deficient 64.8 66.7 66.7 15.2

Survival years of type 2 diabetes vs. serum VC

Normal S. VC 80.7 86.2 90.3 0.0

Low S. VC 73.8 82.6 86.8 3.6

(1) 81.2 88.3 5.0
1 Normal S. VC: serum VC level > 0.4 mg/dL, low S. VC: serum VC level 0.2–0.4 mg/dL, deficient S. VC: serum
VC < 0.2 mg/dL.

4. Discussion
4.1. Population Characteristics

Our population-level results indicating a diabetes type 1 prevalence of 6.3% and a
type 2 prevalence of 93.6% are consistent with the estimations of 6% for type 1 vs. 94% for
type 2 for the US population (between 1999 and 2016), reported by Mosslemi et al. [38].
Our results using large nationally representative dataset suggest they are both statistically
and biologically relevant as well as generalizable beyond the dataset.
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4.2. Lower VC Intake Was Associated with Earlier Diagnosed Age of Type 2 Diabetes

Our results show that the risk of type 2 diabetes is increased in adults with VC intakes
below the EAR and who use no VC supplements compared to adults with VC intake above
the EAR and who use VC supplements. Type 2 diabetic adults with EAR VC intake below
the EAR and without VC supplements developed diabetes 1 and 2 years earlier respectively
than adults with VC intake above the EAR and with VC supplements.

The inverse relationships between dietary VC intake and serum VC level and fasting
glucose and A1c level reported here are consistent with results from previous studies [38–41].
Potential antihyperglycemic mechanisms of VC action were not elucidated, but it is sus-
pected that antioxidant effects of VC help improve insulin sensitivity [40,41]. Relation of
metabolic changes, including that of erythrocyte fragility, to oxidative stress and inflamma-
tion in individuals with diabetes as a function of vitamin C status, have also been reported
extensively [42–44].

Lower serum VC levels in US adults with diabetes than in those without diabetes
shown in this study are also concordant with results from previous studies [6–9]. Significant
positive correlation of dietary VC intake with serum VC and an inverse correlation with
fasting glucose and A1c levels indicate that dietary preference and possibly restricted food
intake [6] are significant factors for the lower serum VC in diabetes. In addition, increased
oxidative stress in diabetes may indicate a role of VC in the risk of developing diabetes [45].

4.3. Diabetes Is a Mortality Risk and Lower VC Intake May Elevate This Risk

Our study revealed that the median life expectancy of the US adult population with
type 1 and type 2 diabetes was about 10 and 2.75 years shorter than adults without diabetes
between 1999 and 2018. Mortality risks of type 2 diabetes with very low VC intake, with
low and deficient serum, were significantly higher compared to those with adequate VC
intake and normal serum VC. The elevated mortality risk of low VC status for diabetes
indicates that adequate VC intake may suppress comorbidities related to complications
including hypertension, dyslipidemia, and cardiovascular disease [16,46,47].

A higher mortality risk for men with lower serum VC was reported for the general US
population from the NHANES II study [48]. Our result supports that all-cause mortality
risks are lower in both adult men and women with VC intakes above the EAR, with normal
serum VC levels, and with VC supplement use than in those with VC intake below the
EAR, low serum VC and without VC supplement use. Our results also support that the
mortality risk of heart disease (ICD 10 codes I00-I09, I11, I13, I20-I51) is higher (HR 1.27,
95% CI 1.12–1.44) for adults without supplement VC than for adults with VC supplement.
Our results showed no significant relation between VC supplement use and mortality risk
for type 2 diabetic women with heart diseases [49]. HR of mortality from heart diseases for
type 2 diabetic women without VC supplement was 1.02 (95% CI 0.71–1.48) using type 2
diabetic women with VC supplement use as the reference. The increased mortality risk
with rising A1c in adults with diabetes is likely because of the poor management and
progress of diabetes. However, an association of low A1c with elevated all-cause mortality
risk in adults without diabetes is consistent with the result from the NHANES III study
reported by Carson et al. [50] and the causes are not all clear.

4.4. VC Supplement May Be Beneficial for Diabetic People with Low Serum VC

The observation of a 22.1% rise (95% CI 21.6–22.5%) in adults with total VC intake be-
low the EAR from 1999 to 2018 is comparable to the 22.6% VC intake decline between 1999
and 2018 reported by Brauchla et al. [11]. 46.5% of US adults had a total VC intake below
EAR and only about 37% of US adults had any VC supplement in 2017–2018. Given the
lower serum VC in people with higher BMI index, possible associations of adequate VC
levels with delayed development of type 2 diabetes, and low mortality risk, there is a
need for intervention to encourage high VC intake and VC supplements for some people
with pre-diabetes and diabetes. It also seems adults, including those with type 2 diabetes
who took 500–1000 mg/day VC supplement had the lowest all-cause mortality risk than
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adults without VC supplement or higher or lower doses of VC supplement. The toxicity of
vitamin C supplements is low and is not believed to have serious adverse effects at high
intakes [30]. It is also inexpensive and well tolerated.

5. Limitations

This study is vulnerable to sampling and inter-laboratory measurement errors in
the NHANES databases. At the population level, low VC intakes contribute to vitamin
deficiency and increased mortality risk, but at an individual level, serum VC deficiency
may not reflect an individual’s low VC intake but may reflect a condition or other illness.
Other factors, such as medications that were not included in the study might also affect the
generalizability of the study results [51]. Despite the limitations, this study has multiple
strengths including the large, ethnically diverse, and representative sample of US adults.
The quality of the data collected by NHANES is generally well-regarded. Our sensitivity
analyses indicated the inclusion or removal of one or more covariates such as race, marriage,
income, smoking, education, BMI and A1c did not change the conclusions regarding
significance levels of ORs or HRs for either VC intake or serum VC or VC supplement.
They imply that the results are strong and robust.

6. Conclusions

Examination of the NHANES between 1999 and 2018 revealed a positive correlation
between dietary VC intake and serum VC levels in people with pre-diabetes and diabetes.
A negative correlation between serum VC and fasting glucose was observed in the same
sample. Furthermore, A1c levels increased as the BMI index increased. Later onset of type 2
diabetes and reduced mortality risk of US adults with type 2 diabetes were associated with
adequate VC intake, VC supplement, and normal serum VC levels. Given the continuously
declining VC intake in the US population between 1999 and 2018, a moderate amount of VC
supplement 500–1000 mg/day may be beneficial to people with pre-diabetes and diabetes.
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