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Abstract: Pregnancy and parturition involve extensive changes in the maternal immune system.
In our randomized, multi-site, double-blind superiority trial using a Bayesian adaptive design,
we demonstrated that 1000 mg/day of docosahexaenoic acid (DHA) was superior to 200 mg/day
in preventing both early preterm birth (less than 34 weeks’ gestation) and preterm birth (less than
37 weeks’ gestation). The goal of this secondary study is to compare the effects of 1000 mg/day versus
200 mg/day on maternal inflammation, a possible mechanism by which DHA may prevent preterm
birth. Maternal blood samples were collected at enrollment (12–20 weeks’ gestation) and at delivery.
Red blood cell DHA levels were measured by gas chromatography, and plasma concentrations of
sRAGE, IL-6, IL-1β, TNFα, and INFγ were measured by ELISA. Data were analyzed for associations
with the DHA dose, gestational age at birth, and preterm birth (<37 weeks). Higher baseline and lower
delivery levels of maternal sRAGE were associated with a greater probability of longer gestation
and delivery at term gestation. Higher-dose DHA supplementation increased the probability of a
smaller decrease in delivery sRAGE levels. Higher IL-6 concentrations at delivery were associated
with the probability of delivering after 37 weeks, and higher-dose DHA supplementation increased
the probability of greater increases in IL-6 concentrations between enrollment and delivery. These
data provide a proposed mechanistic explanation of how a higher dose of DHA during pregnancy
provides immunomodulatory regulation in the initiation of parturition by influencing sRAGE and
IL-6 levels, which may explain its ability to reduce the risk of preterm birth.

Keywords: preterm birth; pregnancy; DHA; sRAGE; IL-6; Bayesian adaptive design

1. Introduction

Parturition is associated with leukocyte infiltration and the release of cytokines to
initiate labor [1,2]. The physiological events that surround preterm parturition remain
elusive but previous data support the finding that maternal inflammation is a primary
contributor to preterm birth. Given the anti-inflammatory properties of docosahexaenoic
acid (DHA), it has been investigated as a plausible therapeutic to prolong gestation by
preventing preterm parturition [3,4]. In our previous trial comparing maternal supplemen-
tation of 200 mg versus 1000 mg of DHA per day, 200 mg was found to have little to no
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effect on maternal, infant, or breast milk inflammatory markers, whereas the women in-
gesting 1000 mg per day had significant decreases in plasma and breast milk inflammatory
cytokine expression [5].

DHA is a metabolically active fatty acid that has been extensively studied in the
context of nutrition, neurodevelopment, and immunology [3,6–10]. The incorporation
of DHA into membrane phospholipids affects lipid raft formation, which further affects
receptor-mediated signaling and changes in membrane fluidity [3,7,10]. Investigations
have demonstrated that, unlike other omega-3 fatty acids, DHA regulates interactions
between cell surface ligands and receptors, resulting in attenuated inflammation [11–15].

Preterm birth is associated with both low maternal blood levels of DHA and low
DHA dietary intake [16,17]. Maternal DHA supplementation has demonstrated efficacy
in preventing preterm birth, but the optimal dose required to achieve a protective effect
has not been clearly defined and the mechanism of action has not been identified [4].
Experts recommend ingesting between 200 mg and 1000 mg of DHA each day during
pregnancy [18], and prenatal vitamin supplements typically provide DHA, but most
contain 200 mg or less. To address the need for evidence-based data on DHA dosing, we
hypothesized that 1000 mg of DHA per day would be superior to 200 mg in preventing
preterm birth [19]. Our randomized, multi-site, double-blind superiority trial using a
Bayesian adaptive design demonstrated that the higher dose of DHA was superior to
the lower dose in preventing both early preterm birth (less than 34 weeks’ gestation) and
preterm birth (less than 37 weeks’ gestation) with participants with low baseline DHA
levels at enrollment benefiting most from the higher-dose supplement [19].

Given the important role of inflammation in the preterm parturition cascade, this
study tested a secondary hypothesis in this Phase 3 clinical trial: that supplementation with
1000 mg per day of DHA would be superior to 200 mg per day in regulating inflammatory
responses and would provide a mechanism by which DHA prevents preterm birth. Several
markers have been identified as indicative of inflammation in pregnancy [20–22] and some
of the most significant are the focus of this investigation: the Receptor for Advanced
Glycation End Products (specifically, soluble and extracellular forms, sRAGE), Interleukin
(IL)-6, IL-1β, Tumor Necrosis Factor alpha (TNFα) and Interferon gamma (IFNγ). Data
were analyzed for associations with the DHA dose, gestational age at birth, and preterm
birth (<37 weeks).

2. Materials and Methods
2.1. Study Design

The study design and enrollment details of the parent study have been previously
published [19]. Women were recruited from three large academic medical centers: the
University of Kansas, Ohio State University, and the University of Cincinnati. The study
was approved by the University of Kansas Medical Center IRB which granted approval
under a central IRB with reliance by the other institutions (STUDY00003455).

Briefly, pregnant women were randomly assigned to take 2 capsules of algal oil daily
(totaling 800 mg of DHA) or soybean and corn oil (0 mg of DHA) beginning between 12 and
20 weeks of gestation. Both groups received a commercially available prenatal supplement
containing 200 mg of DHA. Therefore, the experimental group received 1000 mg of DHA
per day and the control group received 200 mg of DHA per day. The final enrollment
for the parent study included 1100 randomized participants; 492 women in the 200 mg
group and 540 in the 1000 mg group (details are provided in Figure 1). DHA levels were
measured and reported in the original publication using standard fatty acid extraction and
gas chromatography measurements [17,19]. The immune markers, sRAGE and cytokines,
were measured in participants that provided both enrollment and delivery samples for
testing. The final numbers analyzed for this study were 902 individuals; 437 who received
200 mg/day and 465 who received 1000 mg/day.
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Figure 1. Study Design and Enrollment.

2.2. Blood Collection

Maternal blood samples were collected at enrollment and delivery hospitalization
as previously described [19]. All samples were stored at −80 ◦C for the measurement of
sRAGE and inflammatory cytokines.

2.3. ELISA

Analyses were performed on participants for whom both enrollment and delivery
samples were available (n = 437, 200 mg per day; n = 465, 1000 mg/day) (Figure 1). sRAGE
was measured using an ELISA-based format (MesoScale Diagnostics, Rockville, MD, USA)
according to the manufacturer’s protocols and was analyzed independently. Cytokines,
specifically IL-6, IL-1β, TNFα, and IFNγ, were measured on plasma samples using a similar
multi-plex ELISA platform.

2.4. Statistical Analyses

Normal Bayesian models were used to assess the effect of the sRAGE and cytokine
levels of the treatment group at enrollment or delivery on maternal serum DHA sRAGE
and cytokine concentrations. Normal Bayesian models also quantified the effect of the
sRAGE and cytokine levels at enrollment and delivery on the outcome of gestational age at
birth in weeks while accounting for the confounding variables (treatment group, maternal
race and ethnicity, BMI group, history of preeclampsia, DHA at enrollment, and smoking
history (before or during pregnancy)). Similarly, binomial Bayesian models were fit for the
dichotomous outcome of preterm birth (<37 weeks’ gestation, yes/no). Data are reported as
posterior means and Bayesian credible intervals with posterior probabilities. The findings
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can be interpreted as the probability that DHA supplementation and the marker of interest
are associated.

We utilized OpenBUGS version 3.2.3 rev 1012 for all Bayesian analyses (open access
software developed by OpenBUGS Foundation; http:openbugs.net/w/OpenBUGS_3_2_
3?Action=AttachFile&do=get&target=OpenBUGS-3.2.3.tar.gz). All analyses were fitted
using 10,000 burn-in draws of Markov chain Monte Carlo, followed by 40,000 draws for
inference. All prior distributions were non-informative.

3. Results

sRAGE and cytokine measurements were performed on all participants with available
enrollment and delivery maternal blood samples. The parent study had 1032 births for
which sRAGE and cytokine measurements could have been collected and analyzed. Overall,
<0.01% (4/1032) were missing baseline blood samples while 11.3% (117/1032) were missing
delivery blood samples. A total of 11.7% (121/1032) were unable to have their sRAGE and
cytokine data analyzed due to missing either a baseline or delivery blood draw. There were
also 0.9% (9/1032) with samples unusable for processing and analysis, detailed in Figure 1.
For infants born prematurely, prior to 37.0 weeks’ gestation, 26.3% (31/118) were missing
sRAGE and cytokine data due to missing or unusable blood samples while 10.8% (99/914)
of term deliveries were missing sRAGE and cytokine data. A descriptive summary of
maternal sRAGE and the cytokine concentrations as well as pregnancy characteristics are
included in Table 1.

Table 1. Descriptive Summary of Variables.

200 mg/day
n = 437 (47.6%)

1000 mg/day
n = 465 (52.4%)

Total
n = 902

sRAGE [pg/mL], mean (SD)
Enrollment 564.4 (286.4) 520.6 (279.4) 541.8 (283.5)

Delivery 467.7 (277.3) 443.1 (381.4) 455.0 (335.1)
IL 6 [pg/mL], mean (SD)

Enrollment 0.9 (1.0) 1.3 (6.1) 1.1 (4.4)
Delivery 4.5 (7.5) 7.7 (26.0) 6.1 (19.4)

IL 1β [pg/mL], mean (SD)
Enrollment 0.1 (0.2) 0.1 (0.2) 0.1 (0.2)

Delivery 0.2 (0.8) 0.2 (1.0) 0.2 (0.9)
TNFα [pg/mL], mean (SD)

Enrollment 1.7 (0.7) 1.9 (2.1) 1.8 (1.6)
Delivery 2.1 (1.0) 2.1 (1.0) 2.1 (1.0)

INFγ [pg/mL], mean (SD)
Enrollment 6.4 (30.8) 5.1 (13.5) 5.7 (23.5)

Delivery 5.1 (22.7) 4.4 (8.9) 4.7 (17.0)
DHA in RBC fatty acids [%], mean (SD) 6.5 (1.8) 6.4 (1.8) 6.5 (1.8)

Smoker (before or during pregnancy), yes n (%) 105 (24.0) 112 (24.1) 217 (24.1)
Race, n (%)

Non-Hispanic Black 104 (23.8) 89 (19.1) 193 (21.4)
Other 333 (76.2) 376 (80.9) 709 (78.6)

History of Preeclampsia,
yes n (%) 33 (7.6) 30 (6.5) 63 (7.0)

BMI Group, n (%) n = 432 n = 458 n = 890
Obese 138 (31.9) 159 (34.7) 297 (33.4)

Other (BMI < 30) 294 (68.1) 299 (65.3) 593 (66.6)

Differences in the probability of a higher dose of DHA (1000 mg per day) to prevent
preterm birth compared to a lower dose (200 mg per day) were noted in the parent trial
between women with high (>6% of RBC total fatty acids) baseline DHA levels versus
low baseline DHA (<6% of RBC total fatty acids) levels. As previously reported, 54/492
(11%) births occurred at <37 weeks in the 200 mg/day group compared to 44/540 (8.2%)
in the 1000 mg/day group, with a 0.95 posterior probability that 1000 mg was better than

http:openbugs.net/w/OpenBUGS_3_2_3?Action=AttachFile&do=get&target=OpenBUGS-3.2.3.tar.gz
http:openbugs.net/w/OpenBUGS_3_2_3?Action=AttachFile&do=get&target=OpenBUGS-3.2.3.tar.gz
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200 mg [19]. Because of this finding, the baseline percent of DHA in red blood cells was
included as a confounding variable. Other variables included in the analyses were smoking
history (before or during pregnancy), maternal race and ethnicity (non-Hispanic Black
versus other race and ethnicity), history of preeclampsia, and enrollment BMI (>30 versus
≤30 kg/m2). Twelve participants (5 at 200 mg/day and 7 at 1000 mg/day) were removed
from the final models because data on baseline BMI were missing. The primary outcomes
were gestational age at birth in weeks and preterm birth prior to 37 weeks of gestation.

As found in the parent study, treatment with 1000 mg per day demonstrated a signifi-
cant posterior probability (pp = 0.99) of having a greater gestational age at birth compared
to treatment with 200 mg/day (Table 2). sRAGE concentrations were associated with gesta-
tional age at birth after adjusting for group and other covariates in the full model. Mothers
with a higher baseline sRAGE concentration had a significantly longer gestation (pp = 0.99).
Conversely, higher delivery sRAGE levels were predictive of an earlier gestational age at
birth (pp = 0.00). Race, pre-pregnancy BMI, history of preeclampsia, DHA at enrollment,
and smoking history were found to be significant variables and were included in the final
models. The association between sRAGE, DHA, pregnancy characteristics, and gestational
age at birth are summarized in Table 2.

Table 2. Posterior means (Bayesian credible interval) and Bayesian posterior probability for sRAGE concentrations and the
continuous variable (gestation age at birth) or the binary variable (preterm birth). The means are slopes for gestation age at
birth and log-odds ratios for preterm birth.

Posterior Mean
(95% Bayesian Credible Interval) Bayesian Posterior Probability

Gestational age at birth

Treatment
1000 vs. 200 mg per day 0.23 (0.03, 0.42) 0.99

Enrollment sRAGE [pg/mL] 0.0006 (0.0002, 0.0011) 0.996
Delivery sRAGE [pg/mL] −0.0008 (−0.0012, −0.0004) 0.00

Significant variables
Maternal Race

(non-Hispanic Black vs. other) −0.44 (−0.70, −0.19) 0.0003

Pre-pregnancy BMI
(obese vs. other) −0.50 (−0.73, −0.27) 0.00

History of preeclampsia
(yes vs. no) −1.17 (−1.56, −0.78) 0.00

DHA at Enrollment [%] 0.08 (0.02, 0.13) 0.996
Smoker (before or during

pregnancy, yes vs. no) −0.21 (−0.44, 0.03) 0.04

*,# Preterm birth (<37 weeks)

Treatment,
1000 vs. 200 mg per day 0.59 (0.33, 0.96) 0.98

Enrollment sRAGE [pg/mL] 0.999 (0.988, 1.0) 0.92
Delivery sRAGE [pg/mL] 1.001 (1.0, 1.002) 0.002

Significant variables
Maternal Race (non-Hispanic Black vs.

other) 1.77 (0.95, 3.03) 0.04

Pre-pregnancy BMI
(obese vs. other) 1.60 (0.88, 2.71) 0.07

History of preeclampsia
(yes vs. no) 4.15 (1.91, 7.64) 0.0003

DHA at Enrollment [%] 0.84 (0.70, 0.99) 0.98
Smoker (before or during

pregnancy, yes vs. no) 1.40 (0.75, 2.34) 0.16

At least 5000 burn-in and 40,000 Markov chain draws were performed. DHA, % total fatty acids; sRAGE pg/mL. * Modeling the probability
of experiencing a preterm (<37 week) birth. # Mean (SD) gestation age at birth for all samples analyzed, 38.8 (1.6) weeks and % preterm
birth (9.6%).
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Additional analyses using preterm birth (<37 weeks, yes vs. no) as a binary outcome
revealed similar findings (Table 2). As baseline sRAGE levels decreased, the probability
of experiencing a preterm birth increased (pp = 0.92). Moreover, lower delivery sRAGE
levels are associated with a decrease in the odds of preterm birth (pp = 0.002). All defined
variables were included in the model.

The effects of the cytokines IL-6, IL-1β, TNFα, and IFNγ on gestational age at birth
and preterm birth were analyzed individually, while adjusting for the covariates mentioned
earlier (Table 3). Higher concentrations of TNFα and INFγ at delivery were associated
with an earlier gestational age at birth (pp = 0.07 and pp = 0.06, respectively). No other
significant associations between cytokines and gestational age at birth were found. In
the binary analyses of preterm birth, higher levels of both enrollment and delivery IL-6
and lower enrollment levels of TNFα were associated with an increased probability of
experiencing a birth at less than 37 weeks (pp = 0.87, 0.85, and pp = 0.03, respectively).

Table 3. Posterior means (Bayesian credible interval) and Bayesian posterior probability for cytokine concentrations and the
continuous variable (gestation age at birth) or the binary variable (preterm birth). The means are slopes for gestation age at
birth and log-odds ratios for preterm birth. For brevity, the maternal confounder parameter estimates are not shown.

Posterior Mean
(95% Bayesian Credible Interval) Bayesian Posterior Probability

Gestational age at birth

Enrollment IL-6 [pg/mL] 0.003 (−0.022, 0.028) 0.58
Delivery IL-6 [pg/mL] −0.0005 (−0.0063, 0.0055) 0.44

Enrollment IL-1β [pg/mL] −0.18 (−0.61, 0.25) 0.20
Delivery IL-1β [pg/mL] −0.03 (−0.14, 0.07) 0.26

Enrollment TNFα [pg/mL] 0.02 (−0.04, 0.09) 0.76
Delivery TNFα [pg/mL] −0.08 (−0.19, 0.02) 0.07

Enrollment INFγ [pg/mL] −0.001 (−0.005, 0.003) 0.27
Delivery INFγ [pg/mL] −0.005 (−0.010, 0.001) 0.06

* Preterm birth
(<37 weeks)

Enrollment IL-6 [pg/mL] 0.89 (0.67, 1.04) 0.87
Delivery IL-6 [pg/mL] 0.99 (0.95, 1.01) 0.85

Enrollment IL-1β [pg/mL] 1.53 (0.56, 3.00) 0.20
Delivery IL-1β [pg/mL] 0.91 (0.60, 1.16) 0.73

Enrollment TNFα [pg/mL] 0.73 (0.45, 1.04) 0.95
Delivery TNFα [pg/mL] 1.33 (1.00, 1.74) 0.03

Enrollment INFγ [pg/mL] 0.99 (0.95, 1.01) 0.83
Delivery INFγ [pg/mL] 0.996 (0.972, 1.010) 0.62

At least 5000 burn-in and 40,000 Markov chain draws were performed. All models included treatment, race, BMI group, history of
preeclampsia, DHA at enrollment, and smoking history. The estimates were similar, and conclusions did not change from the sRAGE
analysis above. * Modeling the probability of experiencing a preterm (<37 week) birth.

The relative changes (delivery concentrations minus enrollment concentrations) in
sRAGE, IL-6, IL-1β, TNFα, or IFNγ were analyzed with the treatment group alone as a
predictor (Table 4). A smaller decrease in sRAGE and a greater increase in IL-6 (delivery
concentrations minus enrollment concentrations) were both associated with a probability
that 1000 mg/day is better than 200 mg/day (pp = 0.84 and 0.99, respectively) in modulating
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the expression of these molecules. There was a significantly smaller decrease in sRAGE for
mothers receiving the higher-dose DHA supplement (1000 mg per day) compared to those
receiving the lower-dose DHA supplement (200 mg per day, pp = 0.84). The higher-dose
DHA supplement group had a substantially larger increase in IL-6 from baseline to delivery
compared to the lower-dose DHA supplement group (pp = 0.99).

Table 4. Change in sRAGE/cytokine levels between enrollment and delivery, posterior means of the change (Bayesian
credible intervals), and Bayesian posterior probability with treatment group (alone) as a predictor.

Observed Difference
(Delivery-Enrollment)

Posterior Mean
(95% Bayesian Credible Interval)

Bayesian Posterior
Probability (1000 mg Is

Greater than 200 mg)

200 mg 1000 mg 200 mg 1000 mg

sRAGE
[pg/mL]

−96.76
(244.43)

−77.49
(324.63)

−96.94
(−663.9, 472.4)

−77.55
(−651.5, 496.7) 0.84

IL-6
[pg/mL]

3.66
(7.33)

6.36
(23.91)

3.65
(−31.60, 39.08)

6.36
(−29.18, 42.01) 0.99

IL-1β
[pg/mL]

0.15
(0.84)

0.18
(1.05)

0.15
(−1.73, 2.03)

0.18
(−1.72, 2.08) 0.70

TNFα
[pg/mL]

0.39
(0.71)

0.28
(2.14)

0.39
(−2.78, 3.57)

0.28
(−2.93, 3.5) 0.16

INFγ
[pg/mL]

−1.32
(38.29)

−0.66
(16.19)

−1.34
(−58.62, 56.53)

−0.67
(−58.37, 56.98) 0.64

At least 5000 burn-in and 40,000 Markov chain draws were performed.

4. Discussion

Modulation of the maternal immune system occurs during pregnancy to protect the
fetus [23]. Inflammation is essential for the initiation of labor but has also been linked to an
increased risk of developing pregnancy-related morbidities such as chorioamnionitis and
preterm birth [1]. Studies in vitro associated DHA with the attenuation of transcription
factor activities such as nuclear factor (NF)-kB, mitogen-activated protein (MAP) kinases,
and transcriptional activation of the cytokines that are associated with inflammation, such
as TNFα, IL1, and IL-17 [24]. Understanding whether these mechanisms may contribute
to the prevention of preterm birth associated with higher-dose DHA supplementation is
therefore important to understand.

Leukocyte infiltration, cytokine release, and the resulting inflammation contribute
to the initiation of parturition, and the maternal response to this inflammation provides
protective effects for both mother and infant [1,2]. RAGE is a transmembrane receptor
with distinct extra- and intra-cellular domains, and full-length RAGE is membrane bound
and propagates signaling pathways regulating inflammation or immune responses [25].
Alternatively, RAGE exists in multiple extracellular isoforms (soluble RAGE or sRAGE)
as a result of either alternative splicing or proteolytic cleavage [26–28]. For the purposes
of this study, the specific forms of extracellular RAGE were not distinguished, and all
extracellular and soluble RAGE was measured and referred to as sRAGE. sRAGE has been
described with opposing functions: first, as a decoy receptor binding ligands and prevent-
ing intracellular signaling; and second, by binding CD11b on the surface of leukocytes,
activating NFkB-mediated pathways, and propagating inflammation [25,29,30]. Conse-
quently, the function of sRAGE depends upon the extracellular milieu and the severity of
the inflammatory responses. While previous studies have reported differing findings, most
have described sRAGE levels decreasing from early gestation to parturition, but substan-
tially lower sRAGE levels were observed in mothers who experience spontaneous preterm
delivery. On the contrary, inflammatory conditions that are associated with medically
indicated preterm birth, such as preeclampsia, have generally led to higher sRAGE levels
at delivery [31,32].
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Several studies identified gradual increases in maternal serum sRAGE levels through
the second trimester and then significant decreases approaching birth [33–36]. Others have
speculated that the microinflammation and oxidative stress that occur during parturition
create ligands for RAGE and sRAGE and that available sRAGE then acts as a decoy receptor
to prevent deleterious responses. This would explain the decreases in sRAGE at birth and
support the concept that higher levels early in gestation are protective [32].

Mothers who give birth prematurely (<37 weeks) have lower levels of sRAGE than
mothers who deliver at term [21,32,36,37]. This further decrease in sRAGE concentration is
likely due to the events associated with the onset of preterm labor (or parturition) which
are often associated with inflammation and similar inflammatory mediators that interact
with available sRAGE. Several investigations have suggested that higher levels of sRAGE
are associated with longer latency in the context of preterm birth [37], and Bastek et al.
reported that lower maternal serum sRAGE levels were associated with a two-fold increase
in the odds of preterm birth [38].

Our data are in line with previous reports that a higher baseline level of sRAGE
offers protection against preterm birth, allowing for a buffer against pregnancy-related
inflammatory responses. We observed that higher levels of sRAGE at enrollment were
associated with a high probability of longer gestation and a greater probability of birth at
term (≥37 weeks) (Table 2). However, in the context of morbidities such as preeclampsia
and obesity, maternal inflammation occurs at a higher level throughout gestation, and
sRAGE concentrations are increased to respond to this challenge. Thus, higher sRAGE
levels at parturition are associated with a high probability of shorter gestational length
and a greater probability of preterm birth (<37 weeks) (Table 2). Finally, smaller changes
in sRAGE were associated with higher-dose DHA supplementation (1000 mg per day)
compared to a standard lower dose (200 mg per day, Table 4) and a greater probability
that higher-dose DHA supplementation is better than a lower dose in maintaining sRAGE
levels during pregnancy. This data may be interpreted to mean that supplementing with
1000 mg per day of DHA supports a more robust production of sRAGE and the capacity to
reduce inflammation in pregnancy. An important limitation to note was there was more
sRAGE (and cytokine) data missing for those born prematurely compared to the term
births, as noted above in Section 3. Interesting future work could incorporate Bayesian
methods using the other factors included in the models to conduct multiple imputation
with the missing values.

Inflammatory responses due to paracrine interactions within the pregnant uterus are
essential components in the initiation of labor. Elevations in IL-6, IL-1β, and TNFα levels
occur within the process of normal delivery at term, but levels are often more elevated
in the context of pregnancy complications and preterm birth [39]. IL-6 is one of the most
abundant and influential cytokines throughout gestation and plays a significant role in
regulating the release of prostaglandins for parturition [1,39]. While IL-6 does not stimulate
contractions, the onset of labor causes a 1.5-fold increase in IL-6 compared to non-pregnant
women, but the increases are greater in the context of chorioamnionitis, infection, or
preterm birth [1]. Furthermore, some epidemiological evidence links higher IL-6 levels
to preterm birth and suggests that IL-6 levels may be a biomarker of early delivery [22].
In the current study, no association was observed between IL-6 levels at enrollment or
delivery and gestational age at birth. However, the probability of giving birth after 37
weeks’ gestation was associated with higher IL-6 levels (Table 3). As indicated in Table 4,
the group treated with a higher-dose DHA supplement had a greater increase in IL-6 levels
compared to those who received a lower-dose DHA supplement. One interpretation of
these findings is that IL-6 plays a significant role in regulating the parturition process and
that higher levels support uterine quiescence until term gestational age.

IL-1β is a significant regulator of inflammation and labor-inducing genes. It is a
stimulator of COX-2 and thus prostaglandin synthesis and is an upstream inducer of IL-6
production [20,22,40]. IL-1β activates and regulates early responses to infection, activates
NF-kB, and is associated with the onset of spontaneous preterm birth. Our analyses did
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not identify any significant differences in IL-1β and gestational age at birth, preterm birth
(<37 weeks), or the DHA treatment groups (Tables 3 and 4). TNFα is a proinflammatory
cytokine that promotes protection from bacterial and viral infections but has also been
associated with medical complications of pregnancy such as diabetes and preeclamp-
sia [20,22,40]. Higher TNFα levels at delivery were associated with an increased probability of
a shorter gestational length and a greater probability of preterm birth (<37 weeks) (Table 3).
INFγ acts as a chemoattractant and activates macrophages to facilitate host responses in
the face of cellular pathogens. Higher INFγ levels at delivery were associated with the
probability of an earlier gestational age at birth [20,22,39] (Table 3). Neither TNFα nor
INFγ were associated with the DHA supplement amount (high versus low dose). TNFα
and INFγ are not causally associated with the parturition process but are elevated with
inflammatory conditions associated with pregnancy such as chorioamnionitis [40], expo-
sure to environmental pollutants [41], preterm rupture of membranes [41], preeclampsia,
gestational diabetes [22], and preterm birth [20].

5. Conclusions

In summary, our data indicate that higher baseline and lower delivery levels of mater-
nal sRAGE are associated with a greater probability for longer gestation and delivery at
term gestation. Furthermore, we found that higher-dose DHA supplementation increased
the probability of a smaller decrease between sRAGE levels at enrollment and delivery.
Higher IL-6 concentrations at delivery were also associated with the probability of de-
livering after 37 weeks and higher-dose DHA supplementation increased the probability
of greater increases in IL-6 concentrations between enrollment and delivery. These data
obtained from a prospective clinical trial provide a potential mechanistic explanation of
how a higher-dose DHA supplement during pregnancy might provide immunomodulatory
regulation of the initiation of parturition through its influence on sRAGE and IL-6 levels,
which may explain its ability to reduce the risk of preterm birth. A prospective study to
evaluate these relationships is needed.
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