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Abstract: Recent cohort studies indicate a potential role of the antioxidant α-tocopherol in reducing
bone loss and risk of fractures, especially hip fractures. We performed a Mendelian randomization
investigation of the associations of circulating α-tocopherol with estimated bone mineral density
(eBMD) using heel ultrasound and fractures, identified from hospital records or by self-reports and
excluding minor fractures. Circulating α-tocopherol was instrumented by three genetic variants
associated with α-tocopherol levels at p < 5 × 10−8 in a genome-wide association meta-analysis of
7781 participants of European ancestry. Summary-level data for the genetic associations with eBMD
in 426,824 individuals and with fracture (53,184 cases and 373,611 non-cases) were acquired from
the UK Biobank. Two of the three genetic variants were strongly associated with eBMD. In inverse-
variance weighted analysis, a genetically predicted one-standard-deviation increase of circulating
α-tocopherol was associated with 0.07 (95% confidence interval, 0.05 to 0.09) g/cm2 increase in
BMD, which corresponds to a >10% higher BMD. Genetically predicted circulating α-tocopherol was
not associated with odds of any fracture (odds ratio 0.97, 95% confidence interval, 0.91 to 1.05). In
conclusion, our results strongly strengthen a causal link between increased circulating α-tocopherol
and greater BMD. Both an intervention study in those with a low dietary intake of α-tocopherol is
warranted and a Mendelian randomization study with fragility fractures as an outcome.
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1. Introduction

Worldwide, 1.6 million hip fractures are estimated to occur each year [1] at an average
of 80 years of age. Hip fractures and other types of fragility fractures have, besides heavy
costs for the society, a profound impact on quality of life; only one-third of these fracture
patients regain their pre-fracture level of function [1]. There is also a higher risk of death
after the fracture event [2], and especially vulnerable are older men [2]. Scandinavia has
one of the highest incidences of fragility fractures in the world, with a lifetime cumulative
incidence of 50% in women and 25% in men [3,4]. The risk of hip fracture, the most
devastating fragility fracture, increases 44-fold in Swedish women from 55 to 85 years of
age, so that the lifetime risk of hip fracture is 25% in women and 12% in men [4]. Bone
mineral density (BMD) is a strong determinant of future risk of hip fracture. Hip fracture
rates are more than doubled for each standard-deviation lower BMD at the hip [5], whereas
the association between other BMD and fractures sites is generally less strong [5,6].

Fracture risk and bone loss are determined both by genotype and by environmental
factors, where the importance of lifestyle factors increases with advancing age [7,8]. Of
importance, there are now strong indications that oxidative stress is a central biological
mechanism for bone cell senescence, skeletal aging, and loss of BMD [9–11], an important
determinant contributing to fracture risk [5,12].
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By decreasing the generation of free radicals leading to lower oxidative stress, the
risk of low BMD in the elderly might be reduced [9,13,14]. The antioxidant α-tocopherol is
the most potent form of vitamin E that has the potential to scavenge free radicals and has
been proposed to favorably affect BMD [9,13–16]. However, some experimental evidence
indicates that excessive intakes of α-tocopherol decrease bone mass in mice [17], a finding
not confirmed by more recent evidence [18,19]. Studies in humans on α-tocopherol in
relation to bone health are limited and include only observational study designs. A majority
of [14,19–22] but not all [23,24] previous observational studies indicate that low dietary
intakes and low serum levels of α-tocopherol are associated with lower BMD and an
increased risk of fracture, especially hip fractures. Of importance, in many European
countries, the mean α-tocopherol intake is below the recommended levels [25].

Genetic variants that specifically affect a biomarker can be used as instrumental
variables (proxies) for the biomarker to determine whether the biomarker is causally
associated with the outcome. This approach, recognized as Mendelian randomization,
has previously been applied to assess the associations of lifelong circulating metabolite
concentrations with various diseases [26–28] but has not been used to examine serum
concentrations of α-tocopherol and bone phenotypes.

Thus, the Mendelian randomization (MR) design can overcome residual confounding
and other biases in observational studies, thereby strengthening causal inference for an
exposure–outcome association by leveraging genetic variants as proxy indicators for an ex-
posure [29]. In this study, we used the MR design to examine the associations of genetically
predicted circulating α-tocopherol levels with BMD and risk of any type of fracture.

2. Methods
2.1. Selection of Genetic Variants

We used three uncorrelated single-nucleotide polymorphisms (SNPs) related to circu-
lating α-tocopherol concentrations at the level of genome-wide significance (p < 5 × 10−8)
in a meta-analysis of three genome-wide association studies comprising 7781 individu-
als of European ancestry [30]. The association estimates were adjusted for age, cancer
status, and body mass index and, because it is well recognized that vitamin E levels are
influenced by blood lipids, additional adjustment was made for total and high-density
lipoprotein cholesterol. The three SNPs included rs964184 on 11q23.3 close to BUD13,
ZNF259, and APOA1/C3/A4/A5 (p = 7.8 × 10−12), rs2108622 on 19pter-p13.11 close to
CYP4F2 (p = 1.4 × 10−10), and rs11057830 on 12q24.31 close to SCARB1 (p = 8.2 × 10−9).
These genetic variants explained around 1.7% of the variation in log serum α-tocopherol
levels [30]. Mean (±standard deviation) α-tocopherol levels ranged from 11.9 (±3.4) mg/L
to 19.1 (±9.7) mg/L in the included GWASs [30].

2.2. Summary-Level Data for Outcomes

Summary-level data for the associations between the α-tocopherol-related SNPs and
estimated BMD (eBMD), using heel quantitative ultrasound in 426,824 participants and
fracture (53,184 cases and 373,611 non-cases) were taken from GWASs based on data from
UK Biobank [31]. The heel quantitative ultrasound method can measure BMD to a similar
degree as dual-energy X-ray absorptiometry and is an inexpensive, easy to implement,
and radiation-free technique [32]. Mean (±standard deviation [SD]) eBMD levels were
0.56 ± 0.12 g/cm2 in men and 0.51 ± 0.11 g/cm2 in women. Fractures were identified
by hospital Episodes Statistics using ICD-10 codes (n = 20,122) and questionnaire-based
self-reported data (n = 48,818). Omitted were fractures of the face and skull, hands and feet,
atypical femoral fractures, periprosthetic fractures, restored fractures, and pathological
fractures caused by malignancy [31]. The genetic estimates were adjusted for ancestry-
informative genetic principal components 1 to 20, genotyping array, assessment center, sex,
and age.
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2.3. Two-Sample Summary-Level MR Analysis

A ratio estimate for each of the three SNPs was computed by dividing the beta
coefficient for the SNP–eBMD or the SNP–fracture association by the beta coefficient for
the SNP–α-tocopherol association. These ratio estimates were pooled in a fixed-effects
inverse-variance weighted model to obtain the MR estimates per one SD increment of the
association of serum α-tocopherol with BMD and fracture risk. The SD was estimated from
a population-based Swedish cohort of men (n = 2047; https://www.pubcare.uu.se/ulsam/,
(accessed on 1 June 2021)). Mean (±SD) serum α-tocopherol levels were 13.1 (±3.5) mg/L
and 2.5 (±0.25) mg/L on the normal and log-transformed scale, respectively. Stata software
(version 14.0) was used for the analyses.

2.4. Pleiotropy Assessment

We searched the PhenoScanner database [33] to assess whether the α-tocopherol-
associated SNPs were associated with known risk factors for low BMD or fracture risk. We
considered the following factors: body mass index, fat-free soft tissue body mass, height,
type 2 diabetes, smoking, alcohol consumption, and steroid hormones, including estrogens,
testosterone, and cortisol.

3. Results

The characteristics of the three SNPs associated with α-tocopherol and their associa-
tions with eBMD and fracture risk are shown in Supplementary Table S1. Two of the three
α-tocopherol-associated SNPs were strongly associated with eBMD (Figure 1). Genetically
predicted one-SD increment in circulating α-tocopherol levels was associated with 0.07
(95% confidence interval, 0.05 to 0.09) g/cm2 higher eBMD (p < 0.001), which corresponds
to >10% higher eBMD.
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Genetically predicted circulating α-tocopherol was not associated with odds of fracture
(odds ratio 0.97, 95% confidence interval, 0.91 to 1.05; p = 0.48) (Figure 2). None of the three
SNPs was associated with known risk factors for low BMD and fracture at p <0.01.
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4. Discussion

This MR investigation showed that genetically proxied higher circulating α-tocopherol
levels were clearly and independently associated with greater eBMD. Our results are
consistent with several observational studies that found a positive correlation between
serum α-tocopherol and higher BMD [14,19–22]. We were unable to find a significant
association between genetically predicted α-tocopherol levels and fracture risk. In cohort
studies, strongest associations have been found with hip fracture as an outcome, not yet
available for MR study designs.

Previous cohort studies reveal that both higher blood levels of α-tocopherol and higher
dietary α-tocopherol intake are related to higher BMD and reduced risk of osteoporosis and
fractures, including hip fractures [14,19–21]. At the time of the fracture event, hip fracture
patients have been shown to have lower serum α-tocopherol concentrations compared
with controls [22], and serum α-tocopherol concentrations after the hip fracture event
are associated with lower levels of inflammatory markers [14,34]. In addition, higher
circulating α-tocopherol concentrations are related to improved physical performance after
a hip fracture event [14,35]. Interestingly, no association was found between bone mineral
density and serum vitamin E concentrations in the Women’s Health Initiative Study [14,24].
Of notice, however [14], the women in that study had a mean total intake of vitamin E
(including supplements) of about 30 mg/day [24], which is three times higher than the
recommended intake.

Studies in animals have shown that supplementation with α-tocopherol improves
fracture healing and may also improve osseointegration of metallic implants [14,15,36–39]
These findings contrast with results in a Japanese study [17], which reported that high
α-tocopherol intake was harmful for bone by stimulating bone resorption followed by a
decrease in bone mass. The investigators supplemented young rodents (mice and rats) with
vitamin E equivalent to a 30-fold higher dose than the normal intake recommended for these
species [14,40]. Continued high-dose administration of α-tocopherol might be toxic [41]
and results in appetite loss, in turn leading to impaired weight and skeletal growth. A high
vitamin E intake may also adversely influence the use of vitamin D, leading to decreased
bone mass [42]. In contrast, other experimental evidence indicates that a high vitamin
E dose had positive effects on bone health in rodents [15,18,19], and thus, the findings
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presented in the study by Fujita and colleagues [17] displaying an adverse effect on bone
health by high dosing of vitamin E could not later be replicated. Indeed, anti-osteoporotic
properties of vitamin E have been demonstrated in different animal models [43]. Vitamin
E modulates the levels of inflammatory mediators and reactive oxygen species, acting
systemically and locally, with a potent regulatory role in bone metabolism [43]. Specifically,
vitamin E plays an essential role in oxidative stress signaling, with effects on the receptor
activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B
ligand (RANKL)/osteoprotegerin (OPG) and Wnt/β-catenin systems, affecting osteoclast
and osteoblast activity [43]. There are strong indications of an effect of oxidative stress on
bone senescence [9–11,44–46]. Supporting the view that vitamin E dose is of importance
also in humans, a meta-analysis of placebo-controlled randomized trials revealed that low-
dosage vitamin E supplements can reduce all-cause mortality [47], whereas high-dosage
vitamin E supplements, with a mean dose of 400 mg/day corresponding to 40 times the
recommended intake [47], may in contrast lead to higher death rates [14,47].

A strength of our study is the MR design that reduced potential confounding and
reverse causation bias and thus strengthened the causal inference in the association between
circulating α-tocopherol and BMD. The current study was confined to participants of
European origin. Thus, it is not likely that our findings were affected by a population
stratification bias. The genetic instrument was not developed in the UK Biobank, while this
large cohort was used for instrument–outcome association analyses to estimate a causal
effect of blood levels of α-tocopherol on the outcomes BMD and fractures. An overlap in
participants between the instrument-development and outcome samples can cause bias
towards the risk factor–outcome association [48].

A limitation of our study is that few SNPs were available as genetic instruments
for α-tocopherol, which limited the possibility to assess possible pleiotropy (i.e., where
one genetic variant influences multiple phenotypes) through robust MR methods such
as MR-Egger regression. Although none of the SNPs was associated with known risk
factors for low BMD and fracture risk, the variants in the BUD13/ZNF259/APOA5 and
CYP4F2 gene regions were associated with circulating phylloquinone (at p = 6 × 10−8 and
p = 8.8 × 10−7, respectively) [49]. Nevertheless, there is little evidence that phylloquinone
affects BMD [50–52]. A major limitation for the fracture analysis is the hitherto relatively
young age of fracture cases in the UK Biobank, inclusion of self-reported fractures [53],
and a mixture of different types of fractures. An MR study focusing on fragility fractures,
especially hip fractures, would be of interest, but such GWAS data are not available.

5. Conclusions

In conclusion, our results strengthen the view that increasing circulating α-tocopherol
is associated with higher BMD. A randomized clinical trial to investigate the effect on BMD
and fracture risk of moderate doses corresponding to the daily recommended intake of
vitamin E is warranted.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13061940/s1, Table S1: Summary statistics data for the associations of the single-nucleotide
polymorphisms with α-tocopherol and their associations with bone mineral density and any fracture.
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