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Abstract: Abdominal aortic aneurysm (AAA) is a vascular disease involving permanent focal dilation
of the abdominal aorta (≥30 mm) that can lead to catastrophic rupture. Destructive remodeling of
aortic connective tissue in AAA contributes to wall stiffening, a mechanical parameter of the arterial
system linked to a heightened risk of cardiovascular morbidity and mortality. Since aortic stiffening is
associated with AAA progression, treatment options that target vascular inflammation would appear
prudent. Given this, and growing evidence indicating robust anti-inflammatory and vasoprotective
properties for long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs), this study evaluated
the impact of these nutrients (1.8 g/day for 12 weeks) on indices of vascular stiffness in patients with
AAA. At baseline, pulse wave velocity (PWV) and augmentation index normalized to a heart rate
of 75 bpm (AIx75) were significantly higher in patients with AAA compared to control participants
(PWV: 14.2 ± 0.4 m.s−1 vs. 12.6 ± 0.4 m.s−1, p = 0.014; AIx75: 26.4 ± 1.7% vs. 17.3 ± 2.7%, p = 0.005).
Twelve-week LC n-3 PUFA supplementation significantly decreased PWV (baseline: 14.2 ± 0.6 m.s−1,
week 12: 12.8 ± 0.7 m.s−1, p = 0.014) and heart rate (baseline: 63 ± 3 bpm, week 12: 58 ± 3 bpm,
p = 0.009) in patients with AAA. No change was observed for patients receiving placebo capsules.
While this raises the possibility that LC n-3 PUFAs provide improvements in aortic stiffness in
patients with AAA, the clinical implications remain to be fully elucidated.

Keywords: abdominal aortic aneurysm; pulse wave velocity; vascular stiffness; long chain omega-3
polyunsaturated fatty acids

1. Introduction

Abdominal aortic aneurysm (AAA) is a clinically silent cardiovascular disease char-
acterized by permanent and progressive full thickness dilation of the abdominal aortic
segment [1]. AAA affects between 1.2 and 3.3% of men over the age of 60 years and, as yet,
no proven pharmacological therapies exist to halt or reverse disease progression [2]. AAA
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is associated with inflammation, elastin degradation and changes to collagen microarchi-
tecture [3–5]. Aberrations in vascular extracellular matrix contribute to the development
of wall stiffening, a mechanical parameter of the arterial system linked to a heightened
risk of systolic hypertension, coronary artery disease, heart failure and stroke [6]. Vascu-
lar stiffening, defined as a decrease in vessel distensibility, results in reduced buffering
capacity of the vasculature against pulsatile flow from the heart [7]. Alterations in ves-
sel stiffness can be monitored using non-invasive techniques that measure the speed of
forward traveling pulse waves (carotid to femoral pulse wave velocity, PWV) [8] or that
analyze arterial pressure wave reflection characteristics (pulse wave analysis, PWA) [9].
The latter provides an augmentation index (AIx), a parameter that reflects aortic pressure
augmentation relative to pulse pressure [10]. AIx is influenced by the structure and degree
of compliance of vessels distal to measurement sites [11].

Factors contributing to vascular stiffening include increasing age, elevated arterial
pressure and asymmetry in the occurrence of the major scaffolding proteins collagen and
elastin [12]. In patients with AAA, collagen overproduction, diminution of elastin and
abnormal calcium deposition in the aortic media moderate vascular stiffening [13,14].
Vascular stiffening in ageing individuals is associated with a significantly higher risk of
cardiovascular events and cardiovascular and all-cause mortality [15]. Moreover, in patients
with AAA, vascular stiffening has been associated with poor aneurysm shrinkage and
negative long-term cardiovascular outcomes following endovascular aneurysm repair [16].

The association between vascular stiffening and inflammation involves (i) impaired
vasodilatory responses by inflammatory cytokines [17], (ii) vessel wall calcification [18]
and (iii) extracellular matrix degradation [19]. In primary care, inflammation is typically
monitored through the assessment of quantifiable blood-associated markers (C-reactive
protein, erythrocyte sedimentation rate and plasma viscosity) [20]. In experimental settings,
red blood cell distribution width (RDW) is emerging as a novel and reliable biomarker
of inflammation and cardiovascular and all-cause mortality. RDW is a measure of size
variability or heterogeneity of volume among circulating erythrocytes [21]. Findings from a
large cohort study support the existence of strong graded relationships between RDW and
both high sensitivity C-reactive protein and erythrocyte sedimentation rate, independent
of confounding factors [22]. RDW consistently predicts cardiac mortality [23] and a large
meta-analysis has associated each 1% positive increment in RDW with a 14% increase in
total mortality risk (HR 1.14; CI 1.11–1.17) [24]. In addition, RDW values above 14% are
associated with negative impacts on erythrocyte deformability that can result in impaired
RBC flow within the microvasculature [24].

Improving vascular stiffness through pharma-nutritional supplementation is a grow-
ing area of interest. Our group recently reported a significant decrease in RDW in patients
with AAA following 12-week supplementation with 1.8 g long chain omega-3 polyun-
saturated fatty acids (LC n-3 PUFAs) [25]. LC n-3 PUFAs, particularly docosahexaenoic
acid (C22:6n-3; DHA) and eicosapentaenoic acid (C20:5n-3, EPA), down-regulate multiple
aspects of the inflammatory process [26] and reduce the risk of cardiovascular and chronic,
age-related disease states [27–29]. The anti-inflammatory and vasoprotective properties
of LC n-3 PUFAs highlight these nutrients as a potential therapeutic strategy to reverse
increased PWV in patients with AAA. The aims of this study were to (i) compare aortic
stiffness in patients with AAA and control participants, (ii) assess the relationship be-
tween RDW and PWV in patients with AAA, and (iii) evaluate the impact of LC n-3 PUFA
supplementation on vascular stiffness parameters in patients with AAA.

2. Materials and Methods

Vascular stiffness was evaluated in men with AAA (n = 30), recruited for an obser-
vational (case-control) study [25] and compared to a subset of healthy male participants
(n = 20) involved in the same study (Table 1). The impact of LC n-3 PUFA supplemen-
tation on vascular stiffness in the AAA population was investigated as a sub-study of a
previously described double-blind, placebo-controlled trial (ANZCTR12616000483459) [25].
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Patients received LC n-3 PUFA capsules (1.8 g; 5:1 ratio of DHA:EPA; n = 15) or placebo
capsules (49:49:2 ratio of corn oil, olive oil and fish oil; n = 15), for 12 weeks (for trial
details, including evaluation of patient compliance, see [25]). Patients were included if
they were male with a small AAA < 5 cm. Exclusion criteria were consumption of ≥3 fish
meals per week, the use of fish oil or krill oil supplements, age < 60 years or >86 years,
BMI > 39 kg·m−2, cardiac arrhythmia, heart failure, symptomatic aortic stenosis, or chronic
obstructive pulmonary disease. A family history of AAA or known aneurysmal disease
served as additional exclusion criteria for control participants. Vascular stiffness, heart
rate and central blood pressure indices were assessed by two operators at baseline, week 3
and week 12 using the SphygmoCor Xcel (SphygmoCor ver 6.31, AtCor Medical Pty. Ltd.,
Sydney, Australia) and a previously described protocol [30]. RDW was measured in whole
blood as part of full blood count analyses. Measurements were obtained within 10 min of
blood collections using a Coulter AC·T diff™ Analyzer, as previously described [25]. The
omega-3 index, a measurement indicative of long-term fatty acid intake, was assessed in
red blood cells of healthy controls at baseline and in red blood cells of patients with AAA
at baseline and at weeks 3 and 12, as previously described [25]. Continuous demographic
data for patients with AAA and control participants were compared using a Student’S t-test
and are presented as mean ± SD. Categorical demographic variables were compared using
a Fisher’s exact test. Experimental data are presented as mean ± SEM and between group
differences were examined by student’s t-test analysis. The association between PWV and
AAA was assessed using linear regression analysis with adjustment for covariates shown to
be imbalanced between groups (low-dose aspirin, smoking history). Group size estimates
for the observational study were based on PWV values reported in healthy controls (PWV,
10.0 ± 1.7, n = 20) and patients with AAA (PWV, 14.8 ± 4.9, n = 18) [31]. A group size
estimate of 9 was calculated with 80% power (alpha level of 0.05) using power/sample size
(Univ. British Columbia) and pooled variance (Solvers statistics) calculators. Data were
analyzed with Prism (GraphPad Software, La Jolla, CA, USA). IBM SPSS Statistics Version
24 was used for multi-variable regression analysis and statistical significance was set at
p < 0.05.

Table 1. Demographic, biometric and medical characteristics of male patients with abdominal aortic aneurysm (AAA)
and control participants. Continuous demographic data are presented as mean ± SD, categorical demographic data are
presented as number (percentage).

Observational Study Omega-3 Clinical Trial

Variable Control Participants
(n = 20)

AAA Patients
(n = 30)

AAAn-3 Cohort
(n = 15)

AAA Placebo Cohort
(n = 15)

Age (years) 73.2 ± 5.6 74.4 ± 5.3 73.6 ± 5.0 75.1 ± 5.7
AAA size (mm) 39.3 ± 5.3 39.3 ± 5.7 39.2 ± 5.0

Smoking:
Never 8 (40%) 3 (10%) † 1 (7%) 2 (13%)
Past 11 (55%) 24 (80%) 12 (80%) 12 (80%)

Current 1 (5%) 3 (10%) 2 (13%) 1 (7%)
BMI (kg/m2) 28.4 ± 5.3 29.5 ± 5.2 29.4 ± 4.1 29.0 ± 5.0
SBP (mmHg) 141 ± 17 140 ± 18 136 ± 16 144 ± 20
DBP (mmHg) 81 ± 7 79 ± 10 78 ± 8 80 ± 11
Hypertension 12 (60%) 17 (57%) 6 (40%) 11 (73%)

Diabetes 1 (5%) 4 (13%) 3 (20%) 1 (7%)
Dyslipidemia 15 (75%) 19 (63%) 7 (47%) 12 (80%)

CHD 6 (30%) 9 (30%) 5 (33%) 4 (27%)
Anti-hypertensives

Beta blockers 3 (15%) 7 (23%) 4 (27%) 3 (20%)
ARBs 3 (15%) 8 (27%) 3 (20%) 5 (33%)

ACE inhibitors 7 (35%) 4 (13%) 3 (20%) 1 (7%)
CCBs 2 (10%) 6 (20%) 1 (7%) 5 (33%)

Diuretics 2 (10%) 3 (10%) 2 (13%) 1 (7%)
Anti-platelet drugs 3 (15%) 18 (60%) † 11 (73%) 7 (47%)

NSAIDs 1 (5%) 3 (10%) 1 (7%) 2 (13%)
Statins 14 (70%) 21 (70%) 8 (53%) ‡ 13 (87%)

Baseline omega-3 Index 4.53 ± 0.22 4.37 ± 0.20
12-Week omega-3 Index 8.03 ± 0.20 4.26 ± 0.28

† AAA significantly different to control (Fisher’s exact test, p < 0.05). ‡ AAA omega-3 cohort significantly different to placebo cohort
(Fisher’s exact test, p < 0.05). ARBs, Angiotensin receptor blockers; BMI, body mass index; CHD, coronary heart disease; CCBs, Calcium
channel blockers; NSAIDs, non-steroidal anti-inflammatory drugs; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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3. Results
3.1. Vascular Stiffness Indices Are Elevated in Patients with Abdominal Aortic Aneurysm

PWV and AIx75 measurements were significantly higher in patients with AAA com-
pared to the healthy control cohort (PWV: 14.2 ± 0.4 m.s−1 vs. 12.6 ± 0.4 m.s−1, p = 0.014;
AIx75: 26.4 ± 1.7% vs. 17.3 ± 2.7%, p = 0.005).

3.2. AAA Is a Significant Independent Determinant of PWV

Linear regression analysis highlighted a significant association between PWV and
AAA (β = 0.463, 95% CI: 0.426 to 3.248, p = 0.012) following adjustment for covariates
shown to be imbalanced between the control and AAA cohorts (smoking: β = −0.024,
95% CI: −1.618 to 1.394, p = 0.881 and low-dose aspirin: β = −0.152, 95% CI: −1.946 to
0.754, p = 0.376).

3.3. PWV Correlates with Omega-3 Index and Red Blood Cell Distribution Width (RDW) in
Patients with AAA

A significant negative correlation was observed between PWV and omega-3 index
(Figure 1A; r = −0.54, p = 0.017) and a significant positive correlation was observed between
PWV and RDW (Figure 1B; r = 0.40, p = 0.047) in patients with AAA at baseline.

Figure 1. Relationship between pulse wave velocity (PWV) and omega-3 index (A) and PWV and red blood cell distribution
width (RDW) (B) at baseline in patients with AAA.

3.4. Long-Chain Omega-3 PUFA Supplementation Improves Vascular Stiffness in Patients
with AAA

Twelve-week LC n-3 PUFA supplementation significantly decreased PWV (p = 0.014)
and heart rate (p = 0.009) in patients with AAA (Table 2). Remaining vascular stiffness
and central blood pressure indices were unaffected by LC n-3 PUFA supplementation. No
changes in vascular stiffness parameters were observed for the placebo group.
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Table 2. Vascular stiffness, heart rate and central blood pressure indices at baseline and weeks 3 and
12 post treatment (mean ± SEM).

Variable
Fish Oil Cohort Placebo Cohort

Baseline Week 3 Week 12 Baseline Week 3 Week 12

PWV (ms−1) 14.2 ± 0.6 13.8 ± 1.2 12.8 ± 0.7 * 14.6 ± 0.6 14.7 ± 0.6 14.0 ± 0.5
AIx75 (%) 26.4 ± 3.0 24.0 ± 4.2 23.7 ± 2.5 28.3 ± 2.2 28.6 ± 2.6 28.9 ± 2.5

RM (%) 64.1 ± 2.2 61.5 ± 3.0 66.0 ± 3.3 64.7 ± 2.3 67.9 ± 3.3 67.8 ± 1.6
HR (bpm) 63 ± 3 59 ± 3 58 ± 3 ** 66 ± 2 65 ± 2 66 ± 3

cSBP (mmHg) 126 ± 4 127 ± 5 124 ± 3 129 ± 4 129 ± 4 126 ± 3
cDBP (mmHg) 80 ± 3 79 ± 4 79 ± 3 81 ± 3 83 ± 3 79 ± 3
cPP (mmHg) 46 ± 3 52 ± 5 45 ± 2 49 ± 3 46 ± 3 47 ± 2

Fish oil cohort week 12 significantly different to fish oil cohort baseline (* p < 0.05, ** p < 0.01). PWV, pulse wave
velocity; AIx75, heart rate corrected augmentation index; RM, reflection magnitude; HR, aortic heart rate; cSBP,
central systolic blood pressure; cDBP, central diastolic blood pressure; cPP, central pulse pressure.

4. Discussion

Vascular stiffness is increased in patients with AAA compared to healthy adults of a
similar age. This finding is concordant with data arising from studies involving similarly
aged aneurysm patients [30,31]. AAA confers a cardiovascular comorbidity burden prior
to surgical intervention and a higher risk of adverse cardiovascular events in the 5 years
following elective surgery [32]. In view of this, treatments that improve vascular stiffening
are likely to positively impact long-term survival in this patient population.

In this study, twelve-week supplementation with LC n-3 PUFAs (1.5 g DHA, 0.3 g EPA
delivering a total of 1.8 g LC n-3 PUFAs per day) significantly decreased PWV in patients
with AAA. This finding is consistent with a large community-based study involving simi-
larly aged individuals without AAA [33]. In that study, carotid-femoral PWV was assessed
in a cohort of adults with multiple co-morbidities (n = 3055, mean age 66 ± 9 years). Partic-
ipants did not receive LC n-3 PUFA supplementation, however, differences in background
fatty acid levels were noted through assessment of the omega-3 index. The results indi-
cated that higher omega-3 index values were associated with lower carotid-femoral PWV
following age-and sex-adjusted analyses (r = −0.098, p < 0.001) and following multivariable
adjusted analyses (r = −0.060, p = 0.002). This is concordant with the current study where a
significant negative correlation was observed between PWV and omega-3 index in patients
with AAA.

Although the precise mechanisms underlying LC n-3 PUFA-mediated improvements
in vascular stiffness remain to be established, their beneficial effects on cardiovascular
health are reported to be a consequence of abundant accumulation in the sn-2 position
of membrane phospholipids. In this location, LC n-3 PUFAs compete with arachidonic
acid (an omega-6 fatty acid) for enzymes involved in the biosynthesis of pro-inflammatory
mediator molecules [34]. The subsequent metabolism of LC n-3 PUFAs is known to produce
an alternate series of less biologically potent eicosanoids with weaker pro-inflammatory,
platelet-aggregating and vasoconstrictive activities [35,36]. Our finding of a significant
positive correlation between PWV and RDW is concordant with this mechanism. In
view of this, it is possible that LC n-3 PUFA-mediated decreases in vascular stiffness
reflect an improved inflammatory status among patients with AAA who received this
supplement. An additional mechanism has been reported. A recent meta-analysis indicated
a robust protective effect of LC n-3 PUFAs on endothelial function [15]. In that study,
supplementation with 0.45 to 4.5 g/day of LC n-3 PUFAs was associated with a 2.3%
increase in flow mediated dilation (FMD). Smaller FMD is an indicator of endothelial
dysfunction, a factor that contributes to vascular stiffness and predicts a heightened risk of
adverse cardiovascular events [37].

Age, sex, systolic blood pressure and heart rate are determinants of PWV. An effect
of heart rate on PWV has been described previously in Sprague-Dawley rats that were
fitted with a right atrial pacing electrode [38]. The study showed that animals paced at
low heart rates had significantly lower PWV than animals that were paced at higher heart
rates. The positive correlation persisted after correction for mean arterial blood pressure.



Nutrients 2021, 13, 138 6 of 9

In our study, heart rate was significantly reduced after 12-week supplementation with LC
n-3 PUFA capsules, raising the possibility of an indirect effect of LC n-3 PUFAs on PWV
involving modulation of heart rate.

Older populations have a higher PWV than younger populations [39–41] and men
over 30 years have a higher PWV than women who are over 30 years when matched for
age [39]. Only male participants were recruited to this study, and patients with AAA were
matched for age with control participants. That only men were recruited to the study is both
a strength and a limitation. Male sex was an inclusion criterion, thus negating the potential
confounding influence of sex on PWV determinations. Nonetheless, when examining
the effect of LC n-3 PUFA supplementation on PWV, our findings are applicable to men
only and further studies will be required to determine whether the results are translatable
to women with AAA. A positive correlation exists for systolic blood pressure(SBP) and
PWV [39], with a 0.073 m.s−1 increase in PWV reported for each mmHg increase in SBP [40].
In our study, SBP (and diastolic blood pressure(DBP)) were similar across groups in both
the observational study and the omega-3 clinical trial.

Discrepancies exist in the literature regarding the effect of LC n-3 PUFAs on PWV.
Where an effect of LC n-3 PUFAs has been reported, participant age was found to be a
determinant of efficacy. In a study recruiting healthy participants, daily intake of 1.86 g
EPA and 1.5 g DHA for 12 weeks caused a significant (−9%) reduction in carotid-femoral
PWV in older participants (60–80 years), but provided no benefit in a younger cohort
(21–35 years) [41]. A trend for lower PWV was detected in patients with hypertension
receiving 3.36 g LC n-3 PUFAs per day for 12 weeks compared to a placebo; however, this
result did not reach significance. It is noteworthy that the age of patients recruited to that
study (mean, 61.1 years) was lower than the age of patients in our study (Table 1), and
it is possible that younger age groups are less amenable to the effects of LC n-3 PUFA
supplementation. Limitations of this study included the absence of ultrasound screening
for AAA in control participants, small sample size, and a single intervention dose. Several
recent trials of omega-3 fatty acids reported no clinical benefit of omega-3 fatty acid
supplementation in patients who have cardiovascular disease. In a large observational
study of older Danish men with AAA, no correlation was detected between omega-3 index
and maximal aortic diameter or AAA growth rate [42]. High background intake of omega-3
fatty acids is a likely contributor to neutral findings [43]. Danish populations have a higher
intake of seafood-derived omega-3 fatty acids than Australian populations (1225 mg/day
compared to 286 mg/day) [44]. In addition, the consumption of ≥3 fish meals per week
was an exclusion criterion for enrolment in our study. In the Danish study, the baseline
omega-3 index was considerably higher than that identified in the current study of enrolled
Australian participants (7.6% compared to 4.37–4.53%).

5. Conclusions

This study observed elevated PWV values in patients with AAA compared to a
healthy control cohort. A twelve-week LC n-3 PUFA supplementation regimen lowered
AAA patient aortic stiffness and resting heart rate to levels that were comparable to the
control cohort. While these improvements are likely to be beneficial in terms of risks
associated with cardiovascular morbidity and mortality, the clinical implications remain to
be fully elucidated.
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