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SUMMARY
Glucose hypometabolism in cortical structures after functional disconnection is frequently reported in pa-
tients with white matter diseases such as subcortical stroke. However, the molecular and cellular mecha-
nisms have been poorly elucidated. Here we show, in an animal model of internal capsular infarct, that
GABA-synthesizing reactive astrocytes in distant cortical areas cause glucose hypometabolism via tonic in-
hibition of neighboring neurons. We find that reversal of aberrant astrocytic GABA synthesis, by pharmaco-
logical inhibition and astrocyte-specific gene silencing of MAO-B, reverses the reduction in cortical glucose
metabolism. Moreover, induction of aberrant astrocytic GABA synthesis by cortical injection of putrescine or
adenovirus recapitulates cortical hypometabolism. Furthermore, MAO-B inhibition causes a remarkable re-
covery from post-stroke motor deficits when combined with a rehabilitation regimen. Collectively, our data
indicate that cortical glucose hypometabolism in subcortical stroke is caused by aberrant astrocytic
GABA and MAO-B inhibition and that attenuating cortical hypometabolism can be a therapeutic approach
in subcortical stroke.
INTRODUCTION

Subcortical stroke accounts for up to 30%of all ischemic strokes

in humans (Sacco et al., 2006) and is known for its poor prog-

nosis (Yamashita et al., 2016). In several white matter diseases,

including subcortical stroke and vascular dementia, the pres-

ence of regional glucose hypometabolism in the cortex has

been frequently reported (Chu et al., 2002; Tatsch et al., 2003).

This regional glucose hypometabolism is an important charac-

teristic of diaschisis, which is defined as a change in a distant

area following a focal brain injury (Finger et al., 2004). The

appearance of diaschisis has been closely associated with
This is an open access article under the CC BY-N
both clinical symptoms (Carrera and Tononi, 2014) and recovery

from stroke (Seitz et al., 1999; Takasawa et al., 2002). However,

because of the lack of proper animal models, little is known

about the cellular and molecular etiology of cortical hypometab-

olism in subcortical stroke. Moreover, whether and how attenu-

ating cortical hypometabolism can promote the functional recov-

ery after subcortical stroke have been largely unexplored.

We have recently developed a rat model of capsular infarct us-

ing the focal photo-thrombosis technique and successfully re-

produced an appearance of diaschisis in cortical areas (Kim

et al., 2014, 2015). We reported that electrical stimulation of

the cortical diaschisis region caused a significant reversal of
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diaschisis and recovery from post-stroke motor deficits when

combined with rehabilitation, while rehabilitation alone did not

(Kim et al., 2016). However, how electrical stimulation caused

the reversal of diaschisis was not revealed in the previous study.

Given that cortical hypometabolism in diaschisis is tightly asso-

ciated with reduced neuronal and synaptic activities (Lundgaard

et al., 2015), here we postulate that the cortical hypometabolism

is caused by the inhibitory action of GABA.

Astrogliosis, a characteristic reaction of astrocytes to an injury

or disease with morphological alteration, has been reported to

be present in the diaschisis region, as well as in the infarct areas

of brains with stroke (Badan et al., 2003; Burda and Sofroniew,

2014; Garbuzova-Davis et al., 2013). In addition, we have previ-

ously reported that excessive GABA from reactive astrocytes

aberrantly suppresses neighboring neuronal activity (Heo et al.,

2020; Jo et al., 2014; Pandit et al., 2020; Shim et al., 2019;

Yoon et al., 2014). Aberrant GABA synthesis in reactive astro-

cytes has been observed in the hippocampus in Alzheimer’s dis-

ease mouse models and the temporal cortex in postmortem

brains from Alzheimer’s disease patients (Jo et al., 2014; Wu

et al., 2014), the hippocampus in a kainate-induced seizure

model (Pandit et al., 2020), the hypothalamus in an inflammatory

cytokine-induced anxiety-like behavior model (Shim et al., 2019),

and the substantia nigra pars compacta in various animalmodels

and patients with Parkinson’s disease (Heo et al., 2020). From

these previous studies, we hypothesized that aberrant GABA

synthesized and released from reactive astrocytes causes a

reduction in regional metabolism in the diaschisis region by

excessive GABA to inhibit the synaptic activity of neighboring

cortical neurons. Furthermore, we tested the possibility that as-

trocytic GABA-mediated glucose hypometabolism impedes

functional recovery by rehabilitation-mediated activation of mo-

tor circuits.

RESULTS

MAO-B as the Key Mediator for Glucose
Hypometabolism
To monitor the generation and maintenance of diaschisis in the

capsular infarct model with distinct damage of corticospinal mo-

tor fibers and astrogliosis in the internal capsule (Figures 1A and

1B), we performed longitudinal 2-deoxy-2-[18F]-fluoro-D-

glucose micro-positron emission tomography (FDG-microPET).

We found that the ipsilesional cortices in the capsular infarct

model displayed extensive glucose hypometabolism (i.e., dia-

schisis) at day 7 after stroke operation. This cortical glucose hy-

pometabolism was sustained for more than 2 weeks, as evi-

denced by significantly increased cortical diaschisis volume,
Figure 1. A Reversible MAO-B Inhibitor Reverses Diaschisis in the Mo

(A) Schematic diagram of the capsular infarct model and timeline of experiments

(B) Representative H&E-, GFAP-, and neurofilament-stained sections of internal

(C) FDG-microPET images of sham, stroke, and stroke with KDS2010 treatment

(D) Cortical diaschisis volume (F4, 50 = 121.1, p < 0.001).

(E) Time-dependent change of NMA in motor cortex (F6, 75 = 6.423, p < 0.001).

(F) Biosynthetic mechanism of GABA through MAO-B in astrocytes.

N refers to the number of animals studied. For all panels, mean ± SEM, assessed

and ***p < 0.001; ns, non-significant).
which did not appear in sham-operated animals (Figures 1C,

1D, and S1). We also found that infarction of the internal capsule

significantly decreased normalized metabolic activity (NMA),

which is each voxel’s standardized uptake value (SUV) of FDG

normalized to the averaged SUV throughout the whole brain, in

the primary motor cortex (M1; Figures 1E and S1). M1 is a highly

relevant brain region to post-stroke motor deficits (Li et al.,

2016). Next, we tested whether excessive GABA synthesis

from reactive astrocytes is the key mediator of diaschisis by us-

ing a recently developed selective and reversible inhibitor of

monoamine oxidase-B (MAO-B), KDS2010, which has been

confirmed to effectively block astrocytic GABA synthesis (Park

et al., 2019). Intriguingly, we found a dramatic decrease of

cortical diaschisis volume (Figure 1D) and a significant recovery

of glucose metabolism in M1 by KDS2010 administration (Fig-

ures 1E and S1). These results suggest astrocytic GABA as the

key mediator for cortical glucose hypometabolism.

Excessive GABA from Reactive Astrocytes in the
Diaschisis Region
MAO-B is known as the key enzyme for astrocytic GABA synthe-

sis through the putrescine degradation pathway (Yoon et al.,

2014). Given that glucose hypometabolism is tightly associated

with reduced synaptic activity (Lundgaard et al., 2015), the

reversal of diaschisis by MAO-B inhibitor treatment is attributed

to prevention of aberrant inhibition of synaptic activities by

excessive GABA. Therefore, we examined astrocytic GABA in

the diaschisis region by performing immunohistochemistry with

antibodies against GABA andMAO-B. We found that immunore-

activities of GABA and MAO-B were significantly increased in

reactive astrocytes in the diaschisis region in the capsular infarct

model compared with sham-operated animals (Figures 2A, 2B,

2E, and S2). Astrocytic reactivity was defined by an increased

ramification index assessed using Sholl analysis (Figures 2C

and 2D), increased GFAP-positive area (Figure S2C), and

increased mRNA levels of various markers for reactive astro-

cytes, such as GFAP, MAO-B, inducible nitric oxide synthase

(iNOS) (Endoh et al., 1994), LCN2 (Bi et al., 2013), and vimentin

(Mucke and Eddleston, 1993) (Figure S2G). On the other hand,

we found no significant alteration of neuronal GABA (Figures

S3A and S3B). Meanwhile, MAO-B inhibition by KDS2010 treat-

ment significantly restored from aberrant astrocytic GABA (Fig-

ures 2C–2E), elevated protein level and enzymatic activity of

MAO-B, and elevated mRNA levels of astrocytic reactivity

markers (Figure S2). Notably, we found a significant negative

correlation between astrocytic GABA level and NMA in the dia-

schisis region (Figure 2F), suggesting that astrocytic GABA sup-

presses glucose uptake. In the contralesional motor cortex,
tor Cortex in a Capsular Infarct Model

.

capsule.

.

using repeated-measures (RM) two-way ANOVA with Bonferroni test (*p < 0.05
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however, we could not observe alteration of astrocytic GABA or

a correlation between astrocytic GABA and glucose uptake (Fig-

ures 2G–2K). In addition, KDS2010 treatment did not cause any

alteration of morphology and GABA level of astrocytes in sham-

operated animals (Figures S3C–S3H). These results indicate that

cortical hypometabolism in the ipsilesional motor cortex

following capsular infarct requires elevated astrocytic GABA

produced in a MAO-B-dependent manner.

To directly test if reactive astrocytes excessively contain and

release GABA at the single-cell level, we used the sniffer-patch

technique with a biosensor for GABA to detect the release of

GABA from an acutely dissociated astrocyte from the diaschisis

region (Figure 3A), as previously described (Jo et al., 2014).

Among the acutely dissociated cells from rat cortical tissues, a

distinct population of GFAP-positive astrocytes (10.4%) was de-

tected, while almost no neurons (0.04%) were detected (Fig-

ure S4A). The small proportion of GFAP-positive astrocytes

among the whole acutely dissociated cells could be due to the

low expression of GFAP in cortical astrocytes, as revealed by

recent transcriptomic studies (Batiuk et al., 2020; Bayraktar

et al., 2020), and this possibility should be tested in future inves-

tigations. The acutely dissociated cells were stimulated by pres-

sure application of TFLLR, which is a peptide agonist of prote-

ase-activated receptor 1 (PAR1). Because only astrocytes, but

not neurons, express PAR1 in the cortex, TFLLR has been re-

ported to cause Ca2+ increase and transmitter release from as-

trocytes, but not neurons (Lee et al., 2007). We confirmed that

a certain subpopulation of acutely dissociated cells responded

to TFLLR byCa2+ flux analysis using flow cytometry (Figure S4B),

indicating the presence of functional astrocytes. We found that

TFLLR caused a marked release of GABA from cortical astro-

cytes of the stroke rats, while GABA release was rarely observed

in astrocytes in sham-operated rats (Figures 3B–3D). Neverthe-

less, it is still unclear that the GABA response is mediated by as-

trocytes, and it could bemediated by the 90% of GFAP-negative

cells. Overall, these findings support our findings that reactive

astrocytes in the diaschisis region contain and release an exces-

sive amount of GABA, which can be readily released upon Ca2+

increase.

Excessive Tonic Inhibition by Aberrant Astrocytic GABA
We next asked whether excessive astrocytic GABA escalates

the tonic inhibition of cortical pyramidal neurons in the diaschisis

region. We performed whole-cell patch-clamp recordings from

the pyramidal neurons in layer 2/3 of the ipsilesional motor cor-

tex, where diaschisis was pre-identified by FDG-microPET. We

measured GABAA receptor-mediated currents in the presence
Figure 2. MAO-B-Dependent Excessive Astrocytic GABA Was Observe

(A) Timeline of experiments and primary motor cortex (M1) as the region of intere

(B and H) Representative confocal images of GFAP, GABA, and NeuN (n = 3, 5,

(C and I) Representative three-dimensional (3D)-rendered astrocytes using Imari

(D and J) Ramification index of astrocytes (D, F2, 92 = 20.89, p < 0.001; J, F2, 77 =

(E and K) GFAP intensity (E, F2, 27 = 13.12, p < 0.001; K, F2, 28 = 1.103, p = 0.346

(F and L) GABA intensity in GFAP-positive astrocytes (F, F2, 300 = 19.54, p < 0.00

(G and M) Linear regression of astrocytic GABA and NMA (G, F1, 13 = 6.295; M, F

Every point represents one animal. The number on each bar refers to the number o

± SEM, assessed using one-way ANOVA with Tukey test (D–F and J–L) or linear re
of the ionotropic glutamate receptor antagonists APV (50 mM)

and CNQX (20 mM), as described previously (Lee et al., 2010)

(Figure 3E). We found that the tonic GABA current, revealed by

treatment with the GABAA receptor antagonist bicuculline

(50 mM), was dramatically increased in the ipsilesional motor cor-

tex of stroke-operated animals, which was successfully restored

to the normal level by KDS2010 treatment (Figures 3F and 3G).

On the other hand, we could not find any significant change in

the frequency and amplitude of spontaneous inhibitory postsyn-

aptic currents (sIPSCs) in all conditions (Figures 3H and 3L), sug-

gesting that inhibitory action by neuronal phasic GABA was not

altered. In the contralesional motor cortex, both tonic and phasic

GABA currents were not altered (Figures 3J–3N). In addition, we

found that excessive tonic GABA in the diaschisis region was

attributed neither to increased expression of GABAARa5 nor

dysfunction of GAT-mediated GABA uptake (Figures S4C–

S4J). Taken together, aberrant GABA from reactive astrocytes

tonically inhibits the excitability of neighboring neurons in the ip-

silesional motor cortex of the capsular infarct model, ultimately

leading to cortical glucose hypometabolism.

Astrocytic GABA Is Necessary and Sufficient for
Hypometabolism
We have demonstrated that MAO-B inhibition by systemic

administration of KDS2010 reduced the extent and volume of di-

aschisis (Figure 1). To directly identify the cell type and region

specificity of MAO-B’s contribution to diaschisis, we performed

astrocyte-specific gene silencing of MAO-B by injecting a

mixture of AAV-GFAP-Cre-mCherry and lentivirus carrying

pSico-MAO-B-shRNA-GFP (or pSico-scrambled-shRNA-GFP

for control) into the motor cortex, where diaschisis is expected

to be generated by a stroke operation (Figures 4A, S5A, and

S5B). FDG-microPET revealed that subcortical stroke-induced

cortical hypometabolism in the motor cortex was significantly

decreased by astrocyte-specific gene silencing of MAO-B in

the motor cortex, while scrambled short hairpin RNA (shRNA) in-

jection did not rescue from hypometabolism (Figures 4B–4D).

These findings indicate that astrocytic MAO-B in the motor cor-

tex is necessary for the development of cortical hypometabo-

lism. This astrocytic MAO-B-dependent reversal of diaschisis

was associated with reduced astrocytic reactivity and GABA

production (Figures S5C–S5F) and restored tonic GABA current,

but not phasic GABA in the same gene-silenced region (Figures

4E–4H). In addition, astrocyte-specific gene silencing of Bestro-

phin 1 (Best1) (Figures S5G and S5H), a Ca2+-activated anion

channel that is the major GABA-releasing pathway in astrocytes

(Jo et al., 2014; Lee et al., 2010; Oh and Lee, 2017), significantly
d in Diaschisis

st (ROI).

and 7 for sham, stroke, and stroke + KDS groups, respectively).

s 9.0.

1,124, p = 0.330).

).

1; L, H = 14.93, p = 0.0006).

1, 14 = 0.7156).

f cells analyzed. N refers to the number of animals studied. For all panels, mean

gression (G and M) (*p < 0.05, **p < 0.01, and ***p < 0.001; ns, non-significant).
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Figure 3. Pyramidal Neurons in Diaschisis Are Tonically Inhibited by Excessive Astrocytic GABA

(A) Schematic diagram of acute dissociation of astrocytes from motor cortex and sniffer patch.

(B) Representative traces of GABACR-mediated inward currents. Inset, GABA (100 mM)-induced inward currents (n = 3 for each group).

(C) Peak amplitudes of GABACR-mediated currents normalized to full activation (F2, 33 = 6.849, p = 0.003).

(D) Proportion of GABA-releasing astrocytes.

(E and J) Ipsilateral (E) or contralateral (J) motor cortex as ROIs and representative cell image of whole-cell patch clamp.

(F and K) Representative trace of GABAAR-mediated currents (n = 3 for each group).

(G and L) Tonic GABA current (G, F2, 21 = 14.34, p < 0.001; L, F2, 21 = 0.04737, p = 0.954).

(H and M) Amplitude of sIPSC (H, F2, 19 = 0.8124, p = 0.459; M, F2, 19 = 0.06969, p = 0.933).

(I and N) Frequency of sIPSC (I, F2, 19 = 2.519, p = 0.107; N, F2, 19 = 0.06894, p = 0.514).

The number on each bar refers to the number of cells analyzed. N refers to the number of animals studied. For all panels, mean ± SEM, assessed using one-way

ANOVA with Tukey test (*p < 0.05, **p < 0.01, and ***p < 0.001; ns, non-significant).
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Figure 4. Astrocytic GABA Is Necessary for Diaschisis Formation

(A) Schematic diagram of virus injection and timeline of experiments.

(B) FDG-microPET images of scrambled-, MAO-B-shRNA-, or Best1-shRNA-injected stroke-operated rats.

(C) NMA changes after stroke operations (F2, 19 = 10.20, p = 0.001).

(D) Cortical diaschisis volume (F2, 19 = 156.3, p < 0.001).

(E) Representative traces of GABAAR-mediated currents (n = 3, 3, and 4 for scrambled, MAO-B, and Best1-shRNA groups).

(F) Tonic GABA current (F2, 22 = 4.552, p = 0.022).

(G and H) Amplitude (F2, 22 = 2.157, p = 0.140) (G) and frequency (F2, 22 = 0.7075, p = 0.5037) (H) of sIPSC.

The number on each bar refers to the number of animals (C and D) or cells (F–H) analyzed. N refers to the number of animals studied. For all panels, mean ± SEM,

assessed using RM two-way ANOVA with Bonferroni test (C) or one-way ANOVA with Dunnett test (F–H) (*p < 0.05, **p < 0.01, and ***p < 0.001; ns, non-sig-

nificant).
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attenuated the extent and volume of diaschisis (Figures 4B–4D)

and excessive tonic GABA current (Figures 4E–4H). Taken

together, our results indicate that MAO-B-dependent GABA,

which is released through the Best1 channel from astrocytes,

in the motor cortex is necessary for development of glucose

hypometabolism.

We next tested if astrocytic GABA is sufficient to induce dia-

schisis-like glucose hypometabolism. Therefore, we aimed to

determine whether reduction of metabolic rate can be caused

by forcing astrocytic GABA synthesis by directly injecting putres-

cine, the precursormetabolite for GABA production in astrocytes

(Figure 1F), into M1 (Figure S6A). We found that putrescine infu-

sion significantly reducedmetabolic rate on FDG-microPET (Fig-

ures S6B and S6C) and significantly increased astrocytic GABA

and reactivity (Figures S6D–S6F). Furthermore, on the basis of

previous reports that reactive astrocytes aberrantly synthesize
GABA (Jo et al., 2014), we indirectly increased astrocytic

GABA by injecting adeno-GFAP-GFP virus into the same brain

region to induce astrogliosis (Figure 5A), as previously described

(Woo et al., 2017). We observed marked glucose hypometabo-

lism near the injection site (Figures 5B and 5C), with an appear-

ance of numerous reactive astrocytes with increased GABA level

(Figures 5D–5F), whereas saline injection induced neither reac-

tive astrocytes nor hypometabolism. Next, we investigated

whether MAO-B and tonic GABA are indeed critical for glucose

hypometabolism with KDS2010 and L655,708. We orally treated

the adenovirus-injected rats with KDS2010 for 7 days to block

astrocytic GABA synthesis and found that the generation of

glucose metabolic depression was significantly prevented by

KDS2010 treatment (Figures 5G–5J), indicating the critical role

of MAO-B in glucose hypometabolism. Unlike KDS2010,

L655,708 was intraperitoneally administered only once to the
Cell Reports 32, 107861, July 7, 2020 7



Figure 5. Astrocytic GABA Is Sufficient for Diaschisis-like Hypometabolism

(A) Timeline of adenovirus injection and microPET.

(B) FDG-microPET images after adeno-GFAP-GFP virus injection.

(C) NMA change (F1, 14 = 42.04, p < 0.001).

(D) Representative confocal images of GFAP, GABA, and NeuN (n = 5 for each group).

(E) GFAP-positive area (t8 = 2.406, p = 0.0427; one image was analyzed from each animal).

(F) GABA intensity in GFAP-positive astrocytes (t90 = 10.13, p < 0.001).

(G and K) Timelines of experiments for treating adeno-GFAP-GFP virus-injected rats with KDS2010 (G) or L655,708 (K).

(H and L) FDG-microPET images with or without KDS2010 (H) or L655,708 treatment (L).

(I and M) Quantification of volume of cortex with glucose hypometabolism after KDS2010 treatment (I) or L655,708 treatment (M). KDS2010 inhibited the gen-

eration of glucose hypometabolism; L655,708 reversed the glucose hypometabolism.

(J and N) NMA change after adeno-GFAP-GFP virus injection with or without drug treatment (J, F1, 10 = 18.94, p = 0.001; N, F2, 20 = 2.86, p = 0.081).

The number on each bar refers to the number of animals (C), images (E), or cells (F) analyzed. N refers to the number of animals studied. For all panels, mean ±

SEM, assessed using RM two-way ANOVAwith Bonferroni test (C, J, and N) or two-tailed Student’s t test (E and F) (*p < 0.05, **p < 0.01, and ***p < 0.001; ns, non-

significant).

Article
ll

OPEN ACCESS
rats in which glucose hypometabolism was already confirmed,

because the GABAARa5 inhibition can instantly block extrasy-

naptic GABA signaling. We found that glucose hypometabolism

was also significantly reversed by L655,708 treatment (Figures

5K–5N), indicating the critical role of extrasynaptic GABA in

glucose hypometabolism. Taken together, these findings indi-

cate that MAO-B-mediated astrocytic GABA, which binds to ex-
8 Cell Reports 32, 107861, July 7, 2020
trasynaptic GABAARa5 of neighboring neurons, is sufficient to

induce diaschisis-like glucose hypometabolism.

Astrogliosis in the diaschisis region, which is distant from the

original site of infarct in the internal capsule, could be attributed

to retrograde atrophy of the motor neurons caused by massive

collapse of axons of the corticospinal tract (Figure 1B). We

confirmed the degenerative signs of soma, dendrites, and axons



(legend on next page)
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as well as decreased synapse numbers in the diaschisis region

using electron microscopy (Figures S7A–S7F), without any alter-

ation of the size of soma (Figures S7G–S7I). It is possible that this

ultrastructural atrophy of damagedmotor neurons is the cause of

astrogliosis and aberrant astrocytic GABA synthesis, leading to

tonic inhibition of the neighboring motor neurons and hypome-

tabolism (Figure 7). This possibility needs to be validated in the

future.

MAO-B Inhibition Facilitates Rehabilitation-Aided Post-
stroke Recovery
A recent study showed that motor deficits following cortical

stroke are mitigated by reducing GABAA-mediated tonic inhibi-

tion (Clarkson et al., 2010), which we have revealed as the cause

of the cortical hypometabolism in the capsular infarct model.

Coincidently, the appearance of diaschisis is reported to be

inversely correlated with recovery rate of stroke patients (Seitz

et al., 1999; Takasawa et al., 2002). However, whether and

how diaschisis contributes to post-stroke motor recovery from

white matter stroke is unknown. To test if cortical hypometabo-

lism in the diaschisis region impedes motor recovery following

stroke, we treated the stroke-operated animals with KDS2010

and assessed the fine motor function of the contralesional fore-

limb by performing a single-pellet reaching task (SPRT) (Fig-

ure 6A). Contrary to our expectation, severe post-stroke motor

deficits were not recovered by KDS2010 treatment alone (Fig-

ures 6B and 6C). A daily rehabilitation of 20 min SPRT training

also did not recover motor function in this stroke model (Figures

6B and 6C), consistent with a previous study (Kim et al., 2016).

Surprisingly, motor deficits were dramatically recovered when

KDS2010 treatment was combined with rehabilitation (73% to

sham group; Figures 6B and 6C). This trend was similarly

observed in the cylinder test, which was used to assess general

motor function (77% to sham group by combined treatment; Fig-

ures 6D and 6E). Consistent with behavioral recovery, we found

that the combination of KDS2010 and rehabilitation significantly

reduced cortical diaschisis volume and recovered reduced NMA

(Figures 6F–6H). Diaschisis volume showed a significantly nega-

tive correlation with SPRT score (Figure 6I), while NMA showed a

significantly positive correlation with SPRT score (Figure 6J).

These findings indicate that the severity (i.e., extent and magni-

tude) of hypometabolism is tightly correlatedwith behavioral out-

comes. Moreover, a lesion study with a high concentration

(100 mM) of putrescine injection demonstrated that the brain
Figure 6. Combined Therapy of KDS2010 Treatment and Rehabilitation

(A) Timeline of behavioral experiments and groups categorized by interventions.

(B) Schematic diagram of SPRT and SPRT score change by each intervention (F

(C) SPRT score at PL22 (F4, 42 = 69.66, p < 0.001).

(D) Left: schematic diagram of cylinder test. Right: ratio of impaired forelimb use

(E) Ratio of impaired forelimb use at PL22 (F4, 42 = 16.35, p < 0.001).

(F) FDG-microPET images of sham, stroke, and stroke with KDS2010 treatment.

(G) Quantification of cortical diaschisis volume (F4, 48 = 120.0, p < 0.001).

(H) Time-dependent change of NMA in motor cortex (F6, 72 = 2.101, p = 0.064).

(I) Negative correlation between cortical diaschisis volume and SPRT score (F1, 2
(J) Positive correlation between NMA of diaschisis region and SPRT score (F1, 25
(K) Time-dependent change of normalized cortical diaschisis volume (F6, 64 = 82

The number on each bar refers to the number of animals analyzed. N refers to the

way ANOVA with Tukey test (C and E) or RM two-way ANOVA with Bonferroni tes
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region of glucose hypometabolism (i.e., motor cortex) is directly

linked to motor function in the cylinder test and SPRT (Figures

S6I–S6L). The most distinguishing feature of combined therapy

was the faster reduction of diaschisis volume compared with

rehabilitation or KDS2010 alone (Figure 6K). Taken together,

reducing the severity of cortical hypometabolism by KDS2010

can significantly facilitate rehabilitation-aided functional recov-

ery after stroke.

DISCUSSION

In this study, we have delineated the molecular and cellular

mechanism of cortical hypometabolism in a subcortical stroke

model and further established that reducing the astrocytic

GABA synthesis by a reversible MAO-B inhibitor facilitates reha-

bilitation-aided motor recovery from stroke, providing a prom-

ising therapeutic strategy for post-stroke recovery. Our study

highlights that a capsular infarct causes retrograde atrophy in

the sensorimotor cortex, leading to a MAO-B-mediated exces-

sive GABA production from reactive astrocytes (Figure 7). The

tonic release of excessive GABA from reactive astrocytes via

the Best1 channel strongly inhibits neighboring neuronal activity,

which results in glucose hypometabolism (i.e., diaschisis).

Furthermore, pharmacological blockade of astrocytic GABA

synthesis significantly reduces the extent and volume of diaschi-

sis and facilitates rehabilitation-aided functional recovery

(Figure 7).

How can MAO-B inhibition cause functional recovery after

white matter stroke? Astrocytic GABA-mediated diaschisis can

exert a powerful brake on rehabilitation-mediated enhancement

of neuronal activity, which could have induced a reorganization

of recovery circuits. Indeed, we observed that combination ther-

apy with rehabilitation andMAO-B inhibition caused a prominent

and sustained increase in FDG signals in some subcortical struc-

tures, including medial thalamic nuclei, red nucleus, periaque-

ductal gray, and mesencephalic reticular formation, whereas

rehabilitation alone or MAO-B inhibition caused only a marginal

effect in those regions (Figure S1). These findings raise the pos-

sibility that combined therapy causes a reorganization of recov-

ery circuits, which might participate in post-stroke recovery in

the capsular stroke model (Figure 7). This exciting possibility

awaits future investigations.

Overall, our findings are consistent with a previous clinical

study demonstrating a possible beneficial effect of selegiline,
Recovers Post-stroke Motor Deficits

24, 252 = 29.9, p < 0.001).

assessed by cylinder test (F24, 252 = 6.956, p < 0.001).

5 = 15.42).

= 18.92).

.83, p < 0.001).

number of animals studied. For all panels, mean ± SEM, assessed using one-

t (all other panels) (*p < 0.05, **p < 0.01, and ***p < 0.001; ns, non-significant).



Figure 7. Schematic Diagram of Mechanism of Diaschisis through Excessive Tonic Inhibition Mediated by Astrocytic GABA and the Ther-

apeutic Mechanism of Combination of KDS2010 and Rehabilitation
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an irreversible MAO-B inhibitor, on recovery after stroke (Sive-

nius et al., 2001). However, in that study, the therapeutic effect

of selegiline did not reach statistical significance (Sivenius

et al., 2001). This is most likely due to the short-lived action of se-

legiline (Jo et al., 2014). Very recently, we demonstrated that pro-

longed treatment with selegiline fails to reduce aberrant astro-
cytic GABA because of compensatory upregulation of

alternative GABA-synthetic enzymes in astrocytes, which could

be attributed to the irreversibility of selegiline (Park et al., 2019).

To overcome the shortcomings of irreversible MAO-B inhibitors

such as selegiline, we have recently developed KDS2010, with

high selectivity over MAO-A and reversibility with no significant
Cell Reports 32, 107861, July 7, 2020 11
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toxicity (Park et al., 2019). Our present study suggests KDS2010

as an effective replacement of selegiline for treatment of

capsular stroke. Furthermore, KDS2010 is proved to possess

an excellent pharmacokinetic profile, with high bioavailability

(>100%), high blood-brain barrier permeability, and high target

specificity in the central nervous system (Park et al., 2019). On

the basis of these superior drug-like properties, pharmacological

profiles, and potent therapeutic effect in the capsular infarct

model, we propose KDS2010 as a next-generation drug candi-

date for capsular stroke.

In addition to producing GABA in astrocytes, MAO-B has long

been believed to degrade dopamine and produce hydrogen

peroxide. Therefore, the effect of KDS2010 on relieving diaschisis

and post-stroke functional recovery in capsular infarct model

might be attributed to inhibiting dopamine degradation, hydrogen

peroxide production, and/or astrocytic GABA synthesis. In terms

of dopamine degradation, numerous reports have suggested that

the role of MAO-B in dopamine degradation has been exagger-

ated and have cast doubt on the role of MAO-B in dopamine

degradation. For example, several studies demonstrated no

change in extracellular dopamine level in MAO-B-deficient mice

(Fornai et al., 1999) and selegiline-treated mice (Lamensdorf

et al., 1996). These reports raise the possibility that MAO-A is

more likely to be engaged in dopamine degradation than MAO-

B. On the other hand, MAO-B is also well known as a producer

of hydrogen peroxide, andMAO-B inhibition can reduce oxidative

stress, raising the possibility that the therapeutic effect of

KDS2010 could be attributed to a reduction of oxidative stress.

However, we have demonstrated that the diaschisis is reversed

by a treatment with L655,708, an inverse agonist of GABAARa5,

suggesting that KDS2010’s effect is more likely due to MAO-B’s

action onGABAproduction rather thanH2O2 production. Our find-

ings suggest that MAO-B-dependent astrocytic GABA is the key

molecule for the generation and maintenance of the diaschisis.

On the other hand, we cannot completely rule out the possibility

that functional recovery after stroke by KDS2010 is due to a

reduction of MAO-B-dependent oxidative stress. This remaining

possibility awaits further investigations.

The role of reactive astrocytes in the excitation/inhibition (E/I)

balance has been controversial. Several studies have demon-

strated that reactive astrocytes exhibit impaired function of

glutamate uptake, causing neuronal hyperexcitability and spon-

taneous epileptic seizures (Ortinski et al., 2010; Robel et al.,

2015). On the other hand, reactive astrocytes have been demon-

strated to produce and release aberrantly excessive GABA to

strongly inhibit neuronal excitability (Chun et al., 2018; Jo et al.,

2014; Kim et al., 2017; Park et al., 2019; Wu et al., 2014). Reac-

tive astrocytes might exhibit either of the two paradoxical char-

acteristics or both, depending on the degree of reactivity, brain

regions, or disease-specific local environment. We propose

that astrogliosis in the epileptic brain and reactive astrocytes in

the diaschisis region or in the Alzheimer’s disease brain are

distinct: the former might exhibit impaired glutamate uptake

but less increased GABA production, while the latter might

exhibit a greater increase in GABA production but less impaired

glutamate uptake. Such a difference in glutamate uptake and

GABA production should differentially affect the E/I balance. In

the present study of a capsular stroke model, astrocytes in the
12 Cell Reports 32, 107861, July 7, 2020
motor cortex became reactive and exhibited a greater increase

in GABA production, causing neuronal metabolic depression

rather than neuronal hyperactivity.

Diaschisis, manifested by depression of blood flow and meta-

bolism in a distant area following a focal brain injury, has been

previously proposed as a prognostic marker for the likelihood

of functional recovery in stroke patients (Takasawa et al.,

2002). However, this proposal has not been properly validated.

Our study provides the mechanistic insights for the proposed

use of diaschisis-induced regional metabolic depression as a

prognostic marker for functional recovery after capsular stroke.

This was evidenced by the observed negative correlation be-

tween the extent of diaschisis-induced glucose hypometabolism

and post-stroke functional recovery (Figure 7I). More important,

we provide a potent therapeutic tool to actively reduce the extent

of diaschisis, thus facilitating functional recovery after stroke.We

hope that our therapeutic strategy ofMAO-B inhibition by revers-

ible MAO-B inhibitors for post-stroke recovery will be translated

into clinical trials in the near future.
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Antibodies

Chicken anti-GFAP Millipore Cat# ab5541; RRID: AB_177521

Mouse anti-Neurofilament DAKO Cat# M0762; RRID: AB_2314899

Guinea pig anti-GABA Millipore Cat# ab175; RRID: AB_91011

Mouse anti-NeuN Millipore Cat# MAB377; RRID: AB_2298772

Goat anti-Maob Santa Cruz Cat# sc-18401; RRID: AB_2137271

Rabbit anti-PV Swant Cat# PV27; RRID: AB_2631173

Goat anti-LCN2 Abcam Cat# ab31289; RRID: AB_776042

Rabbit anti-Iba1 Wako Cat# 019-19741; RRID: AB_839504

DAPI Pierce Cat# D1306; RRID: AB_2629482

Alexa 488 donkey anti-chicken Jackson ImmunoResearch Cat# 703-545-155, RRID: AB_2340375

Alexa-594 donkey anti-rabbit Jackson ImmunoResearch Cat# 711-585-152, RRID: AB_2340621

Alexa-647 donkey anti-mouse Jackson ImmunoResearch Cat# 715-605-151; RRID: AB_2340863

Alexa-594 donkey anti-guinea pig Jackson ImmunoResearch Cat# 706-585-148; RRID: AB_2340474

Alexa-647 donkey anti-rabbit Jackson ImmunoResearch Cat#; 711-605-152 RRID: AB_2492288

Bacterial and Virus Strains

AAVDJ-GFAP-Cre-mCherry KIST virus facility N/A

Lenti-pSico-MAOB-shRNA-GFP KIST virus facility N/A

Lenti-pSico-scrambled-shRNA-GFP KIST virus facility N/A

Adeno-GFAP-GFP KIST virus facility N/A

Chemicals, Peptides, and Recombinant Proteins

KDS2010 This paper N/A

Putrescine dihydrochloride Sigma aldrich Cat# P7075; CAS: 333-93-7

Rose Bengal Sigma aldrich Cat# 330000; CAS: 632-69-9

L655,708 Sigma aldrich Cat# L9787; CAS: 130477-52-0

Amplex Red Monoamine oxidase Assay Kit Invitrogen Cat# A12214; CAS: N/A

GABA Tocris Cat# 0344; CAS: 56-12-2

D-AP5 Tocris Cat# 0106; CAS: 79055-68-8

CNQX Tocris Cat# 0190; CAS: 115066-14-3

(-)-Bicuculline methobromide Tocris Cat# 0109; CAS: 73604-30-5

NO-711 hydrochloride Sigma aldrich Cat# N142; CAS: 145645-62-1

(S)-SNAP-5114 Sigma aldrich Cat# S1069; CAS: 157604-55-2

Critical Commercial Assays

Amplex Red Monoamine Oxidase Assay Kit Thermo Fisher Scientific Cat#: A12214

Experimental Models: Cell Lines

Human: HEK293T cells Korean Cell Line Bank (Seoul

National University)

RRID:CVCL_0045

Experimental Models: Organisms/Strains

Mouse: Sprague Dawley rats Taconic Cat# SD-M

Oligonucleotides

MAOB shRNA targeting sequence: AAT CGT AAG ATA

CGA TTC TGG

Jo et al., 2014 N/A

Recombinant DNA

pSicoR-MAOBshRNA-mCherry Jo et al., 2014 N/A

pSicoR-scrambled-shRNA-mCherry Jo et al., 2014 N/A
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Software and Algorithms

GraphPad Prism 7, 8 GraphPad software https://www.megasoftware.net/home;

RRID:SCR_005375

NIS-Elements Nikon https://www.nikonmetrology.com/en-gb/

product/nis-elements-microscope-imaging-

software

ImageJ program NIH https://imagej.nih.gov/ij/download.html

Minianalysis Synaptosoft http://www.synaptosoft.com/MiniAnalysis/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, C. Justin

Lee (cjl@kist.re.kr).

Materials Availability
This study did not generate new unique reagents, plasmids, nor mouse lines.

Data and Code Availability
This study did not generate any code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal care and handling were performed according to the directives of the Animal Care and Use Committee and institutional guide-

lines of KIST (Seoul, Korea) and GIST (Gwangju, Korea). Experiments were performed on 105 adult male Sprague Dawley rats

(9 weeks old,�300 g) including stroke experiment (N = 73) and cortex gliosis-inducing experiment (N = 32). All animals were housed

two per cage in a controlled animal facility with ad libitum access to food and water. The animal care unit was maintained on a 12 h

light–dark cycle (07:00 – 19:00) with controlled temperature (21 ± 1�C) and humidity (50%).

Forty-six rats underwent circumscribed photothrombotic stroke lesioning in the posterior limb of the internal capsule (PLIC) and

were randomly allocated into 5 groups based on the rehabilitative training and administration of MAO-B inhibitor (KDS2010): (1)

sham operated group (N = 10, Sham), (2) non-rehabilitation group without KDS2010 treatment (N = 9, Stroke), (3) non-rehabilita-

tion group with KDS2010 (N = 9, Stroke+KDS2010), (4) rehabilitation group without KDS2010 (N = 9, Stroke+rehab), (5) rehabil-

itation group with KDS2010 (N = 9, Stroke+rehab+KDS2010). The proportion of left-handed animals in each group was as follows:

40%, 44%, 33%, 33%, and 56% for sham, stroke, stroke+rehab, stroke+KDS, and stroke+KDS+rehab, respectively. Twenty-two

rats underwent lentivirus carrying MAO-B shRNA (N = 8), Best1-shRNA (N = 8) or scrambled shRNA injection (N = 6) into motor

cortex and stroke lesioning in the PLIC. Thirty-two rats underwent adeno-GFAP-GFP virus injection (N = 8), saline-control (N = 8),

or putrescine injection (N = 8), saline-control (N = 8). Eighteen rats underwent stroke lesioning in the PLIC and treated with

KDS2010 (N = 6), L655,708 (N = 6), or saline (N = 6). Five rats underwent stroke lesioning in the PLIC and sacrificed for electro-

physiology with GABA transporter (GAT) blockers (NO-711 and SNAP-5114). Fifteen rats were underwent stroke lesioning for RT-

qPCR analysis including five sham-control animals. Ten rats were underwent cortical lesioning with putrescine (100 mM) including

five sham-control animals.

METHOD DETAILS

Photothrombotic capsular infarction
Rats underwent photothrombotic capsular stroke lesioning in the PLIC as previously described (Kim et al., 2014; Song et al., 2016).

Briefly, animals were anesthetized with a mixture of ketamine hydrochloride (100 mg/kg) and xylazine (7 mg/kg) and rectal temper-

ature was maintained at 37 ± 0.5�C using heating pad. The optic fiber with a core diameter of 62.5 mm and an outer diameter of

125 mmwas stereotaxically inserted into PLIC target (AP =�2.0 mm, ML = 3.1 mm from bregma, DV = 7.2 mm from dura). Rose Ben-

gal dye (20 mg/kg) was injected through the tail vein. Then, the target was irradiated for 1.5 minutes using the green laser (3.7mW).

After laser irradiation, the optical fiber was removed and the scalp wound was sutured. After surgery, the animal was treated with

ketoprofen (2 mg/kg, i.m.) for pain control. The sham group underwent the same surgical procedure, except that they received an

injection of 0.9% saline instead of Rose Bengal dye.
e2 Cell Reports 32, 107861, July 7, 2020
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The stroke operation was validated by the first set of SPRT which was performed 3 days after stroke operation. Normally, the

stroke-operated rats show distinctively impaired motor behavior, while 20%–30% of the rats did not, which is due to improper tar-

geting of light fiber during stroke operation. These animals, which did not show impaired motor behavior 3 days after stroke opera-

tion, were dropped in the following experiments. No animal was excluded from the analysis after behavioral experiments and FDG-

microPET scanning.

MicroPET Image acquisition and processing
Longitudinal microPET scans were performed tomeasure the regional glucosemetabolism before and after lesioning, administration

of KDS2010, and rehabilitative training. Each rat was scanned a total of four times: a baseline scan prior to infarct lesioning (PL �1),

and scans on post-lesion (PL) days 7, 14, and 21. The microPET/CT scanner (Inveon, SiemensMedical Solution) has a transaxial res-

olution of 1.4 mm full width at half maximum and a 12.7 mm field of view. Animals were food-deprived for 12 h before each scan, and

2-deoxy-2-[18F]-fluoro-D-glucose (FDG; 0.1 mCi/100 g) was injected into the tail vein. After a 30-minute uptake period, the animals

were anesthetized with 2% isoflurane and transferred in the scanner. The head was fixed with a customized head holder (Hyosung

Inc.). Vital signs including respiration (50 ± 5 respirations/min), heart rate (280 ± 20 beats/min), and rectal temperature (37.0 ± 1�C)
were monitored during scanning procedures (BioVet, m2m Imaging Corp). A 25-min static acquisition and 5-min attenuation-correc-

tion computed tomography scan were performed. The acquired images were reconstructed with the iterative OSEM3D/MAP algo-

rithm. Image analysis was performed with the Analysis of Functional NeuroImages (AFNI) package (Cox, 1996). All acquired images

were automatically co-registered to theMRI template of Sprague Dawley rat brain (Papp et al., 2014), andmanual co-registration was

performed for minor misalignment to the template. Images were normalized to the mean value of the whole brain and spatially

smoothed using a 3-D isotropic Gaussian kernel with 1.2 mm full width at half maximum. MRIcroGL program was used to acquire

the 3-D rendered images (http://www.cabiatl.com/mricrogl/).

To identify the metabolic activity of a specific brain region, we utilized NMA (normalized metabolic activity) which is each voxel’s

standardized uptake value (SUV) of FDG normalized by averaged SUV throughout the whole brain. SUV is the quantity of incorpo-

rated FDG in a specific brain region of each animal.

In addition, microPET scans were performed in the same way for cortex gliosis-inducing experiment. Each rat was scanned twice:

pre-injection and post-injection scans (AAV and putrescine). For AAV injection group, the post-injection scan was done after 2 weeks

of injection, in contrast, the putrescine-injection group was scanned after 2 days. Eight rats which received the injection of saline

instead of AAV or Putrescine and scans were used for control.

For investigating the effect of KDS2010 and L655,708 in adeno-GFAP-GFP-induced decrease in FDG uptake, we also performed

microPET scans. For KDS2010 experiment, each rat was scanned twice: pre-injection (3 days prior to virus injection) and post-injec-

tion scans (7 days after virus injection). For L655,708 experiment, each rat was scanned three times: pre-injection (3 days prior to

virus injection), pre-L655,708 (7 days after virus injection), and post-L655,708 (9 days after virus injection). Scanning and analyses

were performed in a same way as described above.

Histological examination
For immunohistochemistry, animals were anaesthetized with ketamine (100mg/kg), and perfused transcardially with 0.9% saline so-

lution followed by 4% paraformaldehyde in 0.1 M phosphate buffered saline (PBS). After post-fixation with 4% paraformaldehyde for

12 h and cryoprotection with 30% sucrose, the brains were coronally sectioned with 30-mm thickness. Sections were stained for he-

matoxylin and eosin (H&E), and immunostained for GFAP, neurofilament-M/H, or Iba1 protein. Primary antibodies were used as

follow: GFAP (1:400, Invitrogen, PA1-9565) and neurofilament (1:600, Dako, M0762). Immunostaining was performed using the

avidin-biotin peroxidase method with the ABC Kit (Vector Laboratories), as previously described (Woo et al., 2017). In brief, antigen

retrieval was conducted by heating the tissue sections at 60�C for 5 minutes in sodium citrate buffer, after which the sections were

incubated in a mixture of 3% hydrogen peroxide and 10% methanol for 20 minutes, followed by 10% goat serum for 1 h at room

temperature. The sections were incubated with each primary antibody for 2 h, biotinylated secondary antibody for 20 minutes,

and streptavidin-horseradish peroxidase (Dako Cytomation) for 20 minutes. They were then developed with a chromogenic solution

of diaminobenzidine and counterstained with hematoxylin to visualize cell nuclei. Known positive and negative tissues were used as

controls.

For immunofluorescence, 30 mm-thick cryosections were incubated for 1 h in a blocking solution (0.3%Triton-X, 3%donkey serum

in 0.1 M PBS) and then immunostained with a mixture of primary antibodies in a blocking solution at 4�C on a shaker overnight. After

washing in PBS 3 times, sections were incubated with corresponding fluorescent secondary antibodies for 1.5 h and then washed

with PBS 3 times. If needed, DAPI (Pierce, 1:3,000) was stained during the second washing step. Finally, sections were mounted with

fluorescent mounting medium (Dako) and dried. A series of fluorescent images were obtained with A1 Nikon confocal microscope,

and 30-mmZ stack images in 3-mm steps were processed for further analysis using NIS-Elements (Nikon) software and ImageJ (NIH)

program. The primary antibodies used for fluorescent immunostaining were as follows: chicken anti-GFAP (1:500; Millipore ab5541),

guinea pig anti-GABA (1:200; Millipore ab175), mouse anti-NeuN (1:1000; Millipore MAB377), goat anti-MAOB (1:100; Santa cruz sc-

18401), rabbit anti-PV (1:500; Swant PV27), goat anti-LCN2 (1:50; Abcam ab31289), and rabbit anti-Iba1 (1:200; Wako 019-19741).

Fluorescent secondary antibodies were purchased from Invitrogen or Jackson ImmunoResearch and used in 1:500 dilutions.
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Sniffer patch with acutely dissociated astrocytes
Sniffer patch was performed as described with a slight modification (Jo et al., 2014). The quickly excised brain was submerged in

ice-cold cutting solution that contained (in mM): 250 sucrose, 26 NaHCO3, 10 d-(+)-glucose, 4 MgCl2, 3 myo-inositol, 2.5 KCl, 2 so-

dium pyruvate, 1.25 NaH2PO4, 0.5 ascorbic acid, 0.1 CaCl2 and 1 kynurenic acid, pH 7.4. All solution was gassed with 95%O2 – 5%

CO2. The brain regions containing motor cortex including diaschisis region were coronally sliced in 300 mm-thickness using a

vibrating microtome (VT1000S, Leica). The motor cortical region of each slice was mechanically dissociated with a round-tip of

vibrating polished glass pipette, connected to an alternating electronic relay switch (Omron G2R-2-S) under the control of function

generator (EZ digital) at 100-Hz rectangular wave function. The aCSF solution containing dissociated cells were collected and centri-

fuged at 1,000 rpm for 5 min. The collected cells were plated on 0.1 mg/mL PDL-coated cover glass, and placed in an incubator for

about 2 h before use. The cell preparation including the time of stabilization was validated in previous studies (Lalo et al., 2011; Lalo

et al., 2014; Lalo et al., 2006).

HEK293T cells, originated from Korean Cell Line Bank andmycoplasma free, expressing GABACR and EGFP were added onto the

cover glass with acutely dissociated cells. According to a previous report, astrocytes can be identifiedmorphologically. To determine

whether GFP-expressing HEK293T cells express GABACR, 100 mM GABA was bath-applied to induce GABACR-mediated full cur-

rent. GABACR-mediated currents were recorded from HEK293T cells expressing GABACR under voltage clamp (Vh =�70 mV) using

Multiclamp 700B amplifier (Molecular Devices), acquired with pClamp 9.2. Recording pipettes were filled with (in mM): 140 CsCl, 0.5

CaCl2, 10 HEPES, 4 Mg-ATP, 0.3 Na3-GTP and 10 EGTA (pH adjusted to 7.3 with CsOH) and osmolality adjusted to 290–310 mOsm

kg-1 with sucrose.

Flow Cytometry with acutely dissociated astrocytes
Flow cytometry was performed to confirm that acutely dissociated cells contain a significant portion of astrocytes, and the cell are live

and functional. All flow cytometry experiments were performed on a BD LSRFortessaTM SORP with 5 lasers and 18 detectors (BD),

controlled using FACSDivaTM software version 6, andwas analyzedwith using FlowJo V10 (BD). Debris and cell clumpswere discrim-

inated using forward scattering (FSC) and side scattering (SSC) gating.

Astrocyte phenotyping
The acutely dissociated cells were collected by and centrifuged at 1,000 rpm for 5 min. The cells were fixed in 4% PFA for 10 min at

4�C, then washed with stain buffer with BSA (554657, BD) for 2 times by repeating centrifugation at 2,500 rpm and re-suspension.

Then, the fixed cells were incubated in the blocking buffer with 0.3% of Triton X-100 for 1 hour, and then labeled with a mixture of

primary antibodies in a blocking solution at 4�C on a shaker overnight. The primary antibodies used for FACS analysis were chicken

anti-GFAP (1:500; Millipore ab5541) and mouse anti-NeuN (1:1000; Millipore MAB377). After washing in stain buffer 3 times by

repeating re-suspension and centrifugation at 3,000 rpm, the cells were incubated with corresponding fluorescent secondary anti-

bodies for 1 h and then washed with blocking buffer 3 times. Finally one drop of 7-AAD (1581611, Bio-Rad) was added to the cell

suspension and analyzed in order to discriminate dead cells. Flow cytometry analysis were preformed using of controls for deter-

mining appropriate gates, voltages and compensations required in flow cytometry.

Calcium flux measurement
To confirm that the acutely dissociated astrocytes are live and functional, Ca2+ flux analysis was performed using flow cytometry with

Oregon Green 488 BAPTA-1 AM (O6807, Thermofisher Scientific). For Ca2+ flux analysis, the acutely dissociated cells were incu-

bated with Oregon Green 5 mM solution in the external solution (150 NaCl, 10 HEPES, 3 KCl, 2 CaCl2, 2 MgCl2, 5.5 glucose, in

mM, pH adjusted to pH 7.3.) for 30 min at 37�C. After incubation, cells were washed and then re-suspended in the external solution.

The fluorescence in each sample was analyzed using 530/30 filter. Baseline calcium levels were recorded for 30 s on the cytometer.

And the sample was removed and add TFLLR (50 mM) and immediately replaced for recording. After loading the compounds

continued recording for 300 s. Ca2+ flux experiments were performed on live, non-fixed cells.

Whole-cell patch-clamp
Prior to recording, 300 mm-thick motor cortex-containing slices from freshly prepared brains were incubated at room temperature for

at least 1 h in aCSF solution (inmM): 126NaCl, 24NaHCO3, 1NaH2PO4, 0.5 ascorbic acid, 2.5 KCl, 2.5 CaCl2, 2MgCl2, and 10D-(+)-

glucose, pH 7.4. For recording, slices were transferred to a recording chamber that was continuously perfused with aCSF solution

(flow rate = 2 mL/min). The slice chamber was mounted on the stage of an upright Olympus microscope and visualized with a 60 3

water immersion objective (NA = 0.90) with infrared differential interference contrast optics and a CCD camera and by using Imaging

Workbench software (Indec BioSystems). Whole-cell recordings were performed from pyramidal neurons located in the layer 2/3 of

motor cortex. The holding potential was �60 mV. Pipette resistance was typically 6–8 MU and the pipette was filled with an internal

solution (inmM): 135 CsCl, 4 NaCl, 0.5 CaCl2, 10 HEPES, 5 EGTA, 2Mg-ATP, 0.5 Na2-GTP, 10QX-314, pH adjusted to 7.2 with CsOH

(278–285mOsmol). Beforemeasuring tonic current, baseline current was stabilized with D-AP5 (50 mM) and CNQX (20 mM). Electrical

signals were digitized and sampled at 50-ms intervals with Digidata 1440A and Multiclamp 700B amplifier (Molecular Devices) using

pCLAMP 10.2 software. Data were filtered at 2 kHz. The amplitude of tonic GABA current was measured by the baseline shift

after L655,708 (1 mM), NO-711 (10 mM), SNAP-5114 (40 mM), and/or bicuculline (50 mM) administration using the Clampfit program.
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Frequency and amplitude of spontaneous inhibitory post-synaptic currents (sIPSCs) before bicuculline administration was detected

and measured by Minianalysis (Synaptosoft). For the analysis of sIPSC frequency and amplitude, two cells from stroke+KDS group,

whose Ra was over 40 MU, were excluded.

Electron microcopy and toluidine blue staining
Rat brains with diaschisis lesion in the microPET images were perfused with 1% paraformaldehyde/0.1% glutaraldehyde in cold

phosphate buffer (PB) delivered by a perfusion pump (36 mL/min) for 5 min, followed by 2% paraformaldehyde/2% glutaraldehyde

in cold PB at the same flow rate for 5 min. Brains were removed and coronally cut into 2-mm-thick slices. After the lesion was eval-

uated macroscopically in the brain slices, tissues were trimmed to approximately 23 23 1 mm, placed in 4% glutaraldehyde in PB

for 24 h at 4�C, postfixed in 2% osmium tetroxide for 2 h at room temperature, rinsed in 0.1 mol/L cacodylate buffer, dehydrated in

graded concentrations of ethanol followed by propylene oxide, incubated in amixture of epon/propylene oxide (50/50, then 80/20 for

4 h), and embedded in epon at 60�C in an oven for 2 days. Semi-thin sections (1-mm-thick) were stained with 1% toluidine blue and

screened by light microscopy to select thin section areas from multiple blocks at each lesion time-point for electron microscopy.

Selected thin sections (800-A thick) were cut with a diamond knife on an ultramicrotome (LKB-Produkter, Bromma), mounted on cop-

per grids, contrasted with uranyl acetate and lead citrate, and viewed on a JEOL 120S electron microscope.

For electron microcopy analysis, we used 2 sham animals and 4 stroke animals. For pathological examination and quantification of

synapse numbers in the diaschisis, we only used tissues of motor cortex. Tissues of sensory cortex were excluded because optical

fiber was introduced through sensory cortex. For quantification of synapse numbers, we used 24 and 29motor cortex sections from 2

sham and 4 stroke animals, respectively. The analyses were performed in a blinded manner by two independent neuropathologists.

Drug administration
KDS2010, a MAO-B inhibitor, was synthesized as previously descried (Park et al., 2019). Rats were habituated with 0.9% saline for

2 weeks prior to surgery. The compound was dissolved in distilled water and administered through oral route (10 mg/kg daily) for

3 weeks from 3 days following stroke operation in Stroke+KDS2010 and Stroke+rehab+KDS2010 group. To test the effect of

KDS2010 in Adeno-GFAP-GFP-injected rats, we administered KDS2010 from 3 days prior to virus injection to 1 week following virus

injection through dissolving the compound in drinking water. The amount of KDS2010 was calculated as 10 mg/kg daily. To test the

effect of L655,708 in stroke rats and Adeno-GFAP-GFP-injected rats, we intraperitoneally administered L655,708 (5 mg/kg) for once

30 minutes prior to FDG administration on the day of PET imaging.

Measurements of MAO-B enzyme activity
The enzymatic activity of MAO-B was measured as previously described (Jo et al., 2014). Rats were anesthetized and then the brain

was quickly excised from the skull and submerged in ice-cold cutting solution, which is the same as the cutting solution for tonic

GABA recordings. After cooling, cortical regions including somatosensory and motor cortex were isolated. The fresh tissues from

each rat were homogenized, and large debris was removed by weak centrifugation. Next, the supernatant was collected and centri-

fuged at 13,000 rpm for 20 min to obtain a mitochondria-rich fraction. The pellet was re-suspended in phosphate buffer, and 20 mg

were used in each well to determine the activity of theMao. Enzymatic activity of MAO-Bwasmeasured using an Amplex RedMono-

amine oxidase Assay Kit (Molecular Probes) according to the manufacturer’s instructions. After 30 min of enzyme reaction at 37�C,
hydrogen peroxide, which is produced byMAO activity, is measured by a color change of Amplex red reagent. The color change was

quantified by measuring absorbance at 570 nm with Infinite M200 PRO microplate reader (TECAN).

Behavioral testing
Two types of behavioral tests were used in this study: the forelimb-use asymmetry test (cylinder test) was used to assess unskilled

motor behavior and the single-pellet reaching task (SPRT) was used to assess skilled motor behavior. To perform the cylinder test

(Hsu and Jones, 2005; Hua et al., 2002), animals were placed in a transparent Plexiglas cylinder (20 cm in diameter and 30 cm in

height) for two minutes to assess the frequency of usage of ipsilesional and contralesional forelimb to support an upright body

posture against the wall of the cylinder. We counted the number of ipsilateral and contralateral forepaw usages for each session.

The test score was calculated as the percentage of the number of ipsilateral usage to the total number of ipsilateral and contralateral

usages. For SPRT evaluation (Gharbawie et al., 2005), we used a clear Plexiglas (45 cm 3 13 cm 3 40 cm) box with a 1 cm wide

vertical slit and food shelf in the midline of the frontal wall. During the entire experimental period, animals were food-restricted to

90% of their body weight for motivating food retrieval. The preferred handedness of each rat was determined during the pre-training

by evaluating how successful the preferred paw was in retrieving sucrose pellets (Bio-Serve) that had been placed obliquely on the

shelf. A successful reachwas considered if the rat extended a forelimb to grasp the pellet, and brought it into themouth without drop-

ping it. The animals were administered 20 pellets per session for evaluation of motor performance. The reaching performance was

calculated as follows:

Number of successful reaches3100

20
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Animals were trained daily for two weeks before photothrombotic stroke lesioning. Animals in the rehabilitation group (Stroke+rehab,

Stroke+rehab+KDS2010) and the sham group underwent daily postoperative training for 20 min for three weeks. Animals in the non-

rehabilitation groups (Stroke and Stroke+KDS2010) performed the reaching task twice per week for three weeks postoperatively and

on the day of sacrifice (i.e, a total of 6 post-operative training sessions). The analyses were performed by a blinded researcher.

Preparation and injection of putrescine and viruses
TheMAO-B shRNA sequence (antisense) is AATCGTAAGATACGATTCTGG. For lentivirus-based shRNA expression, a lentiviral vec-

tor containing the MAOB-shRNA gene was constructed into the HpaI–XhoI restriction enzyme sites of the pSicoR lentiviral vector, as

previously described (Yoon et al., 2014). To selectively knockdown astrocytic MAO-B, we injected AAV-GFAP-Cre-mCherry and

lentivirus containing pSico-MAOB-shRNA-GFP (or pSico-scrambled-shRNA-GFP for control) into the forelimb area of the motor cor-

tex (AP = �2.0 mm, ML = +/� 2.5 mm, DV =�1.5 mm from bregma), using techniques as previously described (Song et al., 2017). A

mixture of 1 mL of AAV and 1 mL of lentivirus virus was slowly injected at the target site (layer 5 of forelimb area) with a rate of 0.1ml/min

using 30G Hamilton syringe connected to an UltraMicroPump (WPI). After injection, the needle was left in place for an additional

10 min before being slowly retracted. Postoperative pain was controlled with ketoprofen (2 mg/kg, i.m.).

To induce neuroinflammation including reactive astrocytosis with aberrant astrocytic GABA production, we developed Adeno-

GFAP-GFP plasmid. As a GFAP promoter, we used gfaABC1D promoter which is reported to be highly specific to astrocytes (Lee

et al., 2008). We prepared pAd-GFAP-GFP using Gateway� gene cloning strategy. In detail, we first excised gfaABC1D-EGFP

from pTYF-1xGfaABC1D-EGFP (Addgene, #19974). Next, for constructing a packaging backbone plasmid containing attB recom-

bination sites for the shuttle vector plasmid to be recombined into, we obtained attB1-GFAP-GFP-attB2 sequence through PCRwith

primer containing attB1 and attB2. Then, Gateway� BP reaction was performed using this attB1-GFAP-GFP-attB2 sequence and

pDonor vector (Invitrogen, 12536017) to obtain pDonor-GFAP-GFP plasmid. Finally, Gateway� LR reaction was performed using

this plasmid with pAd/PL-DEST vector (Invitrogen, V49420) to obtain pAd-GFAP-GFP plasmid.

To confirm whether astrocytic GABA induces cortical diaschisis, we injected 2 mL of Adeno-GFAP-GFP (N = 8) or 2 mM putrescine

(N = 8) into the forelimb area of themotor cortex (AP =�2.0mm,ML = +/� 2.5mm, DV =�1.5mm from bregma) using techniques in a

same way. Animals in the control group (N = 8) underwent the same procedure except that they received an injection of 0.9% saline

(2 mL) instead of Adenovirus and putrescine. To investigate whether KDS2010 and L655,708 reverses Adeno-GFAP-GFP-

induced decrease in FDG uptake, we injected 1.5 uL of Adeno-GFAP-GFP into M1 motor cortex (AP = �0.2 mm, ML = +/�
2.0 mm, DV =�1.5 mm from bregma) and S1 somatosensory cortex (AP =�0.2mm,ML = +/� 4.0mm, DV =�2.5 mm from bregma).

To induce a severe lesion in the cortex, we injected 2 uL of 100 mM putrescine into five consecutive points into the motor cortex

(1: AP = �0.5 mm, ML = +1.5 mm from bregma, DV = �1.3 mm from dura; 2: AP = +1.0 mm, ML = +3.0 mm from bregma, DV =

�1.3 mm from dura; 3: AP = +2.0 mm, ML = +2.5 mm from bregma, DV = �1.3 mm from dura; 4: AP = +3.0 mm, ML = +1.5 mm

from bregma, DV = �1.3 mm from dura; 5: AP = +3.0 mm, ML = +4.0 mm from bregma, DV = �1.3 mm from dura). Animals in the

control group (N = 8) underwent the same procedure except that they received an injection of 0.9% saline (2 mL) instead of putrescine.

Quantitative real-time RT-PCR
Quantitative real-time RT-PCRwas carried out using SYBRGreen PCRMaster Mix. In brief, reactions were performed in triplicates in

a total volume of 10 mL containing 10 pM primer, 4 mL cDNA, and 5 mL power SYBR Green PCR Master Mix (Applied Biosystems).

The mRNA level of each gene was normalized to that ofGapdhmRNA and fold-induction was calculated using the 2–DDCTmethod.

The following sequences of primerswere used.Gfap forward: 50-GAAGAAAACCGCATCACCAT-30;Gfap reverse: 50-TCCTTAATG

ACC TCGCCA TC-30;Maob forward: 50-CGAGAC AGC TTC ACA TTGGA-30;Maob reverse: 50-GCC AAA TTT CAT CCT CTGGA-30;
Inos forward: 50-CCT GTG TTC CAC CAG GAG AT-30; Inos reverse: 50-CGC TTT CAC CAA GAC TGT GA-30; Lcn2 forward: 50-TCA
CCC TGT ACG GAA GAA CC-30; Lcn2 reverse: 50-TCG GTG GGA ACA GAG AAA AC-30; Vimentin forward: 50-AGA TCG ATG TGG

ACG TTT CC-30; Vimentin reverse: 50-TCC GGT ATT CGT TTG ACT CC-30; C3 forward: 50-GAA GCC CTA GTG GGG AAG TC-30; C3
reverse: 50-AAC ACC ATG AGG TCG AAA GG-30; Gapdh forward: 50-ACC CAG AAG ACT GTG GAT GG-30; Gapdh reverse: 50-CAC
ATT GGG GGT AGG AAC AC-30.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image quantification
Confocal microscopic images were analyzed using the ImageJ program (NIH).. For analyzing GABA intensity in GFAP+ astrocytes or

PV+ interneurons, every image was first converted to 16-bit image, then converted into binary. Every GFAP+ astrocyte or PV+ inter-

neuron was picked as a region of interest (ROI). And the binary GFAP+ image and GABA+ image were multiplied to remaining GABA+

signal only in the GFAP+ pixels. In this multiplied image, the mean intensity value of GABA in every ROI wasmeasured. Quantification

of LCN2 intensity in GFAP+ astrocytes was performed in the same way as quantification of GABA intensity. For quantifying GFAP+

area of a GFAP+ astrocyte, we measured mean intensity from 16-bit binary GFAP+ image. To quantify the reactivity of astrocytes, we

performed Sholl analysis with a plugin provided by ImageJ program. To perform Sholl analysis, we used the ROIs described above

from 16-bit binary GFAP+ images. Radius step size was 10 mm and the number of primary branches were automatically inferred from

starting radius.
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Statistical analyses
Data were analyzed with Prism 7 (GraphPad). Time-dependent changes in cortical diaschisis volume, NMA, and behaviors were

analyzed using two-way ANOVA (p < 0.05, Bonferroni correction for multiple comparisons). Differences between two different groups

were analyzed with the two-tailed Student’s unpaired t test. For assessment of change of a group by a certain intervention, the sig-

nificance of data was assessed by the two-tailed Student’s paired t test. For comparison of multiple groups, one-way analysis of

variance (ANOVA) with Tukey’s or Dunnett’s multiple comparison test was assessed. All data are represented as mean ± standard

error of the mean (SEM). The significance level is represented as asterisks (*p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant).

For the longitudinal PET study, a group-level linear mixed-effect model was performed with the 3dLME program of AFNI to assess

differences between baseline (PL �1) and PL 7, 14, and 21 images for each group of animals. Statistical maps were corrected and

thresholded at the significance level (p < 0.001, false discovery rate q < 0.05). In addition, we conducted a voxel-wise paired t test with

3dttest in AFNI to compare pre-injection versus post-injection scan (AAV, putrescine, and saline injection groups). Monte Carlo simu-

lation was used with 3dClustSim program in AFNI, and statistical maps were thresholded at p < 0.01 and the minimum cluster size of

39 voxels with p < 0.05. The resulting statistical maps overlaid on the template to show areas of significant brain activity changes. An

ROI was manually defined in ipsilesional motor cortex to identify the longitudinal changes of NMA. In addition, using Pearson’s cor-

relation (p < 0.05), we examined correlations between NMA changes in ROI and intensity of astrocytic GABA, and correlations be-

tween NMA changes or volume of cortical diaschisis and SPRT scores.
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