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Abstract: More studies that are focused on the bioeffects of radio-frequency (RF) electromagnetic
radiation that is generated from the communication devices, but there were few reports with
confirmed results about the bioeffects of RF radiation on reproductive cells. To explore the effects
of 1950 MHz RF electromagnetic radiation (EMR) on mouse Leydig (TM3) cells. TM3 cells were
irradiated or sham-irradiated continuously for 24 h by the specific absorption rate (SAR) 3 W/kg
radiation. At 0, 1, 2, 3, 4, and 5 days after irradiation, cell proliferation was detected by cell
counting kit-8 (CCK-8) method, cell cycle distribution, percentage of apoptosis, and cellular reactive
oxygen species (ROS) were examined by flow cytometry, Testosterone level was measured using
enzyme-linked immunosorbent assay (ELISA) assay, messenger ribonucleic acid (mRNA) expression
level of steroidogenic acute regulatory protein (StAR) and P450scc in TM3 cells was detected by
real-time polymerase chain reaction (PCR). After being irradiated for 24 h, cell proliferation obviously
decreased and cell cycle distribution, secretion capacity of Testosterone, and P450scc mRNA level were
reduced. While cell apoptosis, ROS, and StAR mRNA level did not change significantly. The current
results indicated that 24 h of exposure at 1950 MHz 3 W/kg radiation could cause some adverse
effects on TM3 cells proliferation and Testosterone secretion, further studies about the biological
effects in the reproductive system that are induced by RF radiation are also needed.
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1. Introduction

Radiofrequency (RF) electromagnetic radiation (EMR) is a non-ionizing radiation, with frequencies
ranging from 10 MHz to 300 GHz that can have negative effects on human health [1,2]. Modern cellular
phones typically operate at a frequency of 850 to 2100 MHz. While the biological effects of RF-EMR
can be mediated through thermal and non-thermal mechanisms, it appears that the latter are more
important in regards to cell phone usage [3]. In this context, the specific absorption rate (SAR)
defines the amount of RF energy that is absorbed by body tissues and serves to evaluate the emission
of transmitters located near the body [4]. In fact, the SAR resulting from cell phone RF radiation
fluctuated between 0.12 and 1.6 W/kg of body weight [5], with the International Committee of
Non-Ionizing Radiation Protection defining the threshold for safe exposure at 2 W/kg for both thermal
and non-thermal effects, and at 4 W/kg for non-thermal effects [6].

Int. J. Environ. Res. Public Health 2018, 15, 17; doi:10.3390/ijerph15010017 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://dx.doi.org/10.3390/ijerph15010017
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2018, 15, 17 2 of 10

A marked decline in male fertility has been reported in recent years [7,8]. Studies suggest that
male infertility is mainly related to exposure to toxic chemicals, ionizing radiation, RF-radiation, and
other environmental nuisances [9]. Moreover, several reports have linked cell phone usage with
adverse effects on the male’s reproductive system [10]. Some of the negative reported effects of
RF-EMR on testis function included increased permeability of the blood-testis barrier, changes in
testicular morphology, decreased sperm count, motility, and percent normal morphology, as well as
disrupted sperm DNA integrity or endocrine function [11]. Some of these studies suggested that the
main mechanism that is linked to these unexpected effects was related to increased oxidative stress
within the reproductive organs [12–16].

The studies of RF-EMR on testis function have mostly been performed in vivo level to evaluate
gross effects on fertility or testis function, but have not given insight into the effects of this radiation
in vitro level. In this regard, Leydig cells are the interstitial testis cells with a crucial role for supporting
spermatogenesis and male reproductive function, given that they secrete 95% of the testosterone for the
male [17]. Notably, in some studies, the application of RF-EMR radiation to mouse Leydig cells (TM3)
resulted in upregulation of the Ets1 oncogene, providing a potential mechanism for the disruption
of interstitial cell function [18]. However, no other parameters of cell function were evaluated in
this study. Therefore, the objectives of our study were to investigate the effects of RF-EMR on the
proliferation, viability, and function of TM3 Leydig cells.

2. Materials and Methods

2.1. Cell Cultureand Ethics Statement

TM3 cells that were used for our experiments were purchased from Shanghai Cell Bank of Chinese
Academy of Sciences. Cells were expanded in gelatin-coated 10 cm Petri dishes. Medium consisted of
Dulbecco’s modified Eagle’s medium (DMEM/ F-12 1:1; Invitrogen, Carlsbad, CA, USA), with 10%
fetal bovine serum (FBS; Gibco, Grand Island, NY, USA). When cells reached about 80% confluence,
they were harvested by 0.25% trypsin treatment (Invitrogen) and were used for experiments. Cell was
always cultured in the incubator at 37 ◦C in a humidified air atmosphere with 5% CO2.

2.2. RF-EMR Exposure Equipment and Exposure Parameter

The exposure setups Xc-ELF irradiation system (sXc-1950, Zurich, Switzerland, Figure 1) that
was used consists of four parts: the RF generator, the arbitrary function generator, the narrow band
amplifier, and two rectangular waveguides (Zurich, Switzerland). Six standard 35-mm Petri dishes
can be exposed in each rectangular waveguide, with one being used for irradiation and the second
waveguide used for sham-exposure. The SAR (0~4 W/Kg) values are quantified with full feedback
control in the exposure system. The sensors and fans of the exposure system are connected to a
PC that monitors the SAR value (3 W/kg) during exposure and maintain a constant temperature
and environment for the waveguides (37 ◦C, 5% CO2). The PC randomly selects one waveguide for
exposure in each trial, and the temperature difference between the exposure and sham-exposure
chambers does not exceed 0.1 ◦C. TM3 cells in the exponentially growing phase were used for
experiments. For this purpose, 3 mL of cell suspension were seeded into 35 mm Petri dishes at
the density of 1 × 104 cells/mL, 4 h prior to placement into the exposure chambers. The dishes have
been placed to fill both waveguides, and then, randomly, one set of dishes wastreated, and the other set
was sham-exposed. The treated group received 1950 MHz GSM-Talk continuous signals for 24 h at SAR
of 3 W/kg. Within the irradiation chambers, the temperature remained constant at 37 ◦C ± 0.091 ◦C
during the exposure period.
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Figure 1. 1950 MHz radiofrequency (RF) exposure system. (A) Exposure setup; (B) Mu-metal box;
(C) Current source; and, (D) Arbitrary function generator controlled by a computer.

2.3. Cell Proliferation Assay

After the 24 h treatment period, cells suspensions of exposed and sham-exposed groups were
washed by centrifugation to remove trypsin, and then cells were resuspended in fresh DMEM medium.
Cells suspension was then seeded into five pieces of 96-well dishes. In each dish, eight wells were
seeded for each of the two groups (1000 cells/100 µL/well). Following culture for 24 h, 10 µL of the
CCK-8 solution (Cell CountingKit-8, Bi Yun Tian, Nanjing, China) were added to each well and further
incubated for 2 h, according to the manufacturer’s directions. The CCK-8 kit is based on the MTT assay,
which relies on the transformation of MTT to form a non-water-soluble dye by the dehydrogenase
activity within viable cells. Hence, the colorimetric quantification, which is performed at 450 nm using
a spectrophotometer (Bio-Rad 680, Bio-Rad, Hercules, CA, USA), provides optical density values that
correlate with the proportion of proliferating cells. Values averaging the optical density readings of
five dishes for the exposure and sham-exposure group were used to make a proliferation curve.

2.4. Cell Cycle Analysis

As above, following the 24 h treatment period, the exposed and the sham-exposed cells
suspensions were washed by centrifugation to remove trypsin and then cells have been resuspended in
fresh DMEM medium. For each of the two groups, cells were distributed into 25 dishes, corresponding
to five replicates at each of the following concentrations:1 × 105, 0.5 × 105, 1 × 104, 0.5 × 104, or 1 × 103

cells/mL. Incubation proceeded for 1, 2, 3, 4, or 5 days, corresponding to each of the five concentrations
seeded, respectively, to ensure that a similar number of cells would be available at each time period
analysis. At harvest time, cells were washed twice with PBS and fixed in 70% ethanol at 4 ◦C,
overnight. Then, cells were resuspended in PBS containing 0.01% RNase (Sigma-Aldrich, Saint Louis,
MO, USA) and incubated with 0.5% propidium iodide at RT for 1 h. Cells were then analyzed by flow
cytometry using a FACS Calibur Flow Cytometry at 488 nm (BD biosciences, Franklin Lakes, NJ, USA).
The percentage of cells in different phases of the cell cycle was calculated by MultiCycle (DeNovo
Software, Thornhill, ON, Canada).
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2.5. Cell Apoptosis Analysis

Cells were processed as per cell cycle analysis up to harvest for analysis, which was also performed
on day 1 to 5, following irradiation. The assay was performed using the Fluorescein Isothiocyanate
Annexin V Apoptosis DetectionKit I (BD) following the manufacturer’s directions. Briefly, cells were
harvested by trypsinization, washed twice with ice cold PBS, and then resuspended in 1× Binding
Buffer at a concentration of 1 × 106 cells/mL. Then, 100 µL of the cell suspension (1 × 105 cells) were
transferred to a 5 mL culture tube. Fluorescein Isothiocyanate Annexin V (5 µL) and propidium iodide
(5 µL) were added, followed by gentle vortex and incubation for 15 min at RT in the dark. Then, 400 µL
of 1× Binding Buffer were added to each tube without washing followed within 1 h by analysis using
a FACS Calibur Flow Cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). Gating was performed
for FITC-Annexin V and/or PI staining, to identify the following potential groups: Negatively stained
or viable cells; FITC-Annexin V+ but PI− or early apoptotic viable cells; and, FITC-Annexin V+ and PI+

or apoptotic dead cells.

2.6. Testosterone Content Assay

Cells were processed to analyze Testosterone content after from day 1 to 5 consecutively irradiation.
At those time points, the supernatant was collected, and cells were harvested by trypsinization, washed
and placed in eppendorf tubes. After centrifugation, cell pellets were resuspended in 500 µL of lysis
buffer (50 mM hydroxyethyl piperazine ethanesulfonic acid, pH 7.4; 5 mM propanesulfonate; 5 mM
dithiothreitol) and incubated at 4 ◦C for 15 min. Extracts were then centrifuged at 14,000× g in
a microfuge at 4 ◦C, and supernatants were transferred to fresh tubes. Protein concentration was
quantified by the Bradford assay method using the Bio-Rad Dc System (Bio-Rad, Hercules, CA, USA).
Then, Testosterone concentrations were determined by using an ELISA kit (Elabscience, Wuhan, China),
following the manufacturer’s directions. Optical density (OD) measurements were performed as per
cell cycle analysis.

2.7. StAR and P450scc mRNA Expression

Cells were processed to analyze StAR and P450scc mRNA expression after from day 1 to day 5
consecutively irradiation. At those time points, total RNA isolation was performed by using Trizol
reagent, following the manufacturer’s directions. Then, 500 ng of total RNA were reverse-transcribed
using the Real-Time Quantitative Reverse Transcription kit (Takara, Tokyo, Japan) in a 10 µL reaction
volume following the manufacturer’s instructions. Then, 500 ng of DNA per reaction were used to
detect different PCR products using specific primers to amplify the steroidogenic acute regulatory
protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). Cycling conditions consisted of 1 cycle of initial denaturation (95 ◦C,
30 s), and 40 cycles of amplification (95 ◦C, 5 s; 60 ◦C, 30~34 s). Primers were designed using
the Primer Gene Synthesis software (Takara, Tokyo, Japan) with the following sequences: StAR
(Forward) ACTCAACAACCAAGGAAGG, (Reverse) ATTTGGGTTCCACTCTCC; P450scc (Forward)
AGAAGCTGGGCAACATGGAGTCAG, (Reverse) TCACATCCCAGGCAGCTGCATGGT; GAPDH
(Forward) TCCTGCACCACCAACTGCTTAG, and (Reverse) AGTGGCAGTGATGGCATG GACT.

2.8. Intracellular Cell ROS Analysis

Cells were processed to analyze intracellular ROS after from day 1 to 5 consecutively irradiation.
At those time points, cells from the exposure and sham-exposure group were handled as follows: 1 mL
culture medium serum-free without serum was added into the each group after washing two times
with PBS, (1) for the positive group, 1 µL Rosup was added into it and incubated at 37 ◦C for 20 min;
(2) except the negative group, 1 mL diluted DCFH-DA (Reactive Oxygen Species Assay Kit, Jiancheng
Bioengineering Institute, Nanjing, China) was added into each group, which based on 1:1000 scale,
was diluted with serum-free culture medium, and then they were incubated for 20 min at 37 ◦C in the
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incubator; (3) During incubation process, these dishes were gently shaken in every interval of 3~5 min
to make probe contact with the cells completely; (4) Then cells were washed three times in serum-free
medium and intracellular ROS level was determined by flow cytometry.

2.9. Statistical Analysis

All data were expressed as the mean ± SD, and the analysis were carried by using SPSS 13.0
software (SPSS Inc., Chicago, IL, USA). All of the experiments were conducted at least in triplicate.
Student t-test followed by homogeneity of variance test was used to analyze the significant differences
between the exposed and sham-exposed group. The criterion for significance (p-value) was set at 0.05
and 0.01 compared the exposure with sham-exposure group.

3. Results

3.1. Proliferation of TM3 Cell was Inhibited by RF Radiation

By using CCK8 method assay, when compared to sham exposure group, cell proliferation in the
exposure group was inhibited significantly at the day 3 to day 5 after 24 h of exposure at 3 W/kg
1950 MHz radiation (p < 0.01) (Figure 2).
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Figure 2. Proliferation of TM3 Leydig cells at day 1 to day 5 following exposure to radiofrequency (RF)
electromagnetic radiation. Values represent mean ± SEM for each of the exposure and sham-exposure
groups at each time point. ** p < 0.01 vs. sham-exposure (Student t-test).

3.2. RF Radiation Resulted in S Phase Arrest

When compared with the sham-exposed group, the proportion of G1 phase in TM3 cells decreased
in the exposed group at 3 and 5 days after radiation (p < 0.05; Table 1). Conversely, the proportion of S
phase increased in the exposure group at all time points after exposure (p < 0.05, Table 1). There were
no significant differences in the proportion of cells in the G2 phase between the two groups (Table 1).

Table 1. Cell cycle distribution of TM3 cells after radiofrequency (RF) exposure.

Days
G1 S G2

Sham Exposure Sham Exposure Sham Exposure

1 45.56 ± 1.22 43.60 ± 1.54 26.75 ± 1.26 31.66 ± 1.00 ** 27.69 ± 2.41 24.74 ± 2.19
2 51.16 ± 0.15 50.73 ± 2.41 20.18 ± 1.10 23.76 ± 0.47 ** 28.66 ± 2.02 25.51 ± 2.46
3 51.44 ± 0.81 42.36 ± 3.77 * 27.49 ± 2.40 35.20 ± 2.28 * 21.07 ± 1.56 22.44 ± 1.1
4 49.46 ± 3.44 45.38 ± 1.44 25.62 ± 0.45 27.63 ± 1.06 * 24.92 ± 0.96 26.99 ± 1.04
5 55.38 ± 3.15 47.80 ± 0.84 * 20.14 ± 0.49 29.88 ± 2.53 ** 24.21 ± 1.45 22.32 ± 0.83

Note: ** p < 0.01 vs. sham-exposure (Student t-test), * p < 0.05 vs. sham-exposure (Student t-test).
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3.3. RF Radiation Produced No Effects on TM3 Cell Apoptosis

As compared to sham exposed group, percentage of cell apoptosis did not change at any of the
post-exposure time points after present radiation by using Flow Cytometry assay (Figure 3).
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Figure 3. Percentage of apoptosis in TM3 Leydig cells at 1 day to 5 days following exposure to RF-EMR.
Values represent mean ± SEM for each of the exposure and sham-exposure groups at each time point.

3.4. Testosterone Secretion Inhibited by RF Radiation

Testosterone secretion is one of the most important function of Leydig cells. Testosterone contents
were analyzed by ELISA assay. When compared to sham-exposed group, Testosterone contents in the
supernatant were diminished at day 1, day 2, and day 4 following RF exposure (p < 0.05; Figure 4A).
Similarly, as compared to sham-exposed group, intracellular Testosterone contents in the exposure
group also decreased after the exposure, but there was significant difference only at day 1 and day 2
following the treatment (p < 0.05; Figure 4B).
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3.5. StAR and P450scc mRNA Expression Downregulated by RF Radiation

As compared to sham-exposed group, StAR and P450scc mRNA expression decreased in the
exposure group (Figure 5), and only for P450scc mRNA expression, there were significant differences
at day 2 to day 5 following the exposure (p < 0.05).
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levels of StAR induced by RF-EMR in TM3 cells; (B) Relative mRNA expression levels of P450scc
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3.6. RF Radiation Produced No Effect on Intracellular ROS Generation

By using flow cytometry assay, there were no significant differences in intracellular ROS levels
between the exposure and the sham-exposed group (Figure 6).
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4. Discussion

The interstitial cells of the testis, also termed Leydig cells, bestow an essential regulatory function
upon male reproduction through testosterone secretion and consequent support spermatogenesis.
Therefore, Leydig cells might be a target with negative effects of RF-EMR from cell phone usage on
male reproduction from some researches [19–23]. Herein, we demonstrated that RF-EMR exposure
at 1950 MHz negatively affected cell proliferation, cell cycle arrest, and testosterone secretion on
TM3 cells, mouse Leydig cell line. It is consistent with previous in vivo studies, which changes of
reproductive function induced by RF-EMR [19,21]. Other studies have also addressed the effects of
RF-EMR of various frequencies, ranging from 50 MHz to 2.4 GHz different parameters of Leydig cells.
For instance, Romano Spica et al. [18] reported an increase induction of the Ets1 oncogene in TM3 cells
and postulated a negative effect on the cells’ activity related to Ca2+ metabolism, although this was not
directly evaluated.
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In the present study, when compared to the sham-exposed group, testosterone contents in
the supernatant and intracellular of TM3, cells decreased significantly at different time points
in the exposed group. Previous studies had shown swelling of intracellular organelles, such as
mitochondria after Leydig cells that were exposed to RF-EMR [24,25], which might presumably affect
their steroidogenic function. Notably, in the process of steroid synthesis, the conversion of cholesterol
to pregnenolone is catalyzed by the enzyme cytochrome P450scc, which is localized on the matrix side
of the inner mitochondrial membrane [26]. Then, the conversion of pregnenolone is catalyzed and
transferred to testosterone by other steroid synthesis enzymes [27]. StAR is another important limiting
enzyme in the synthesis of testosterone [28]. Consistent with the results which we found testosterone
contents decreasing, the mRNA expression level of these enzymes such as P450scc and StAR was
generally lower for exposed TM3 cells, although differences between the exposed and sham-exposed
group only exists significantly from day 2 to day 5 for P450scc, following exposure.

In an attempt to understand the potential mechanisms behind the effects of RF-EMR on
Leydig cells, we also assessed intracellular ROS generation. Several studies have hypothesized
that the imbalance between intracellular free radicals and antioxidant systems leading to oxidative
stress may play an important role in the process of damage stemming from different types
of exposure [12–14,29–31]. Especially in some experiments in vivo, the results indicated that
anti-oxidative stress could induce by electromagnetic radiation [32–34]. Also, there is some negative
effects which RF-EMR couldn’t induce oxidative stress [35]. However, ROS levels in TM3 cells did not
change significantly between the exposure group and the sham group after radiation, it suggested that
oxidative injuries could not be induced by the present exposure condition.

Also, from our results, RF-EMR could not induce apoptosis in TM3 cells based upon the percentage
of Annexin V+ or PI+ cells. In agreement, Zeni et al. [36] reported that 10 W/kg UMTS (Universal
Mobile Telecommunications System) RF exposure for 24 h could not elicit any effects on cell viability
and apoptosis in rat pheochromocytoma (PC12) cells. Conversely, in another study, the testes of male
Wistar had a high percentage of apoptosis after exposure to 2.45 GHz microwaves and 900 MHz
RF-EMF [20,37]. The power level of EMR (or SAR) is associated with the occurrence of DNA double
strand breaks and the induction of apoptosis-related genes. Therefore, the discrepancies between this
and our studies may be related to differences in RF radiation power and the sensitivity of different
cell lines.

5. Conclusions

In summary, we found that it elicited inhibition of the proliferation, changes in cell cycle
distribution, and the dysfunction of testosterone secretion in TM3 cells after exposure to 24 h continuous
1950 MHz GSM-Talk radiation with SAR of 3 W/kg. However, these effects were not induced by
increasing of intracellular ROS levels and did not cause TM3 cells apoptosis. Hence, we hypothesize
that inhibition of TM3 cell proliferation herein stemmed from changes in cell cycle distribution and
lead to the dysfunction of testosterone secretion in TM3 cells in present studies. Further research is
required to explore the molecular mechanisms involved in the suppression TM3 cell proliferation as
well as testosterone secretion which induced by RF-EMR on male reproductive function.
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