
Science of the Total Environment 551–552 (2016) 344–356

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Maternal and early life exposure to phthalates: The Plastics and
Personal-care Products use in Pregnancy (P4) study
Tye E. Arbuckle a,⁎, Mandy Fisher a, Susan MacPherson a, Carly Lang a, Gilles Provencher b, Alain LeBlanc b,
Russ Hauser c, Mark Feeley d, Pierre Ayotte b,e, Angelica Neisa a, Tim Ramsay f,g, George Tawagi h

a Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
b Centre de toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, QC, Canada
c Department of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, MA, United States
d Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
e Axe Santé des populations et pratiques optimales en santé, Centre de recherche du CHU Québec, Québec, QC, Canada
f Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
g Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
h Department of Obstetrics and Perinatal Medicine, The Ottawa Hospital, Ottawa, ON, Canada
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Data are limited on levels of phthalates
in various maternal-fetal matrices.

• Metabolites were measured in maternal
and infant urine, meconium and breast
milk.

• Maternal urinary levels in Ottawa
Canada generally lower than in
European studies.

• Postnatal maternal and infant urinary
MBzP highly correlated

• Results support some maternal-fetal-in-
fant transfer of phthalates.
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Phthalates are a groupof chemicals found in a number of consumer products; some of these phthalates have been
shown to possess estrogenic activity and display anti-androgenic effects.While a number of biomonitoring stud-
ies of phthalates in pregnant women and infants have been published, there is a paucity of data based on both
multiple sampling periods and in different matrices. Phthalate metabolites were measured in 80 pregnant
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women and their infants in Ottawa Canada (2009–2010) in urine, meconiumand breastmilk collected at various
time periods pre- and post-parturition. At least 50% of the women had at least one urine sample greater than the
limit of detection (LOD) for the various phthalate metabolites, with the exception of mono-n-octyl phthalate
(MnOP), mono-isononyl phthalate (MiNP) and mono(carboxy-isooctyl) phthalate (MCiOP). Four major clusters
of maternal urinary metabolites were identified. Among infants (n= 61), the followingmetabolites were rarely
(b 10%) detected: mono-cyclohexyl phthalate (MCHP), mono-isononyl phthalate (MiNP), mono-methyl phthal-
ate (MMP), andmono-n-octyl phthalate (MnOP).Whilemono-benzyl phthalate (MBzP),mono-3-carboxypropyl
phthalate (MCPP),MEHHP, andMEOHPwere frequently detected inmaternal urines at any time point, theseme-
tabolites were rarely detected in breast milk. Maternal urinary concentrations of MEP and the DEHPmetabolites
were higher in samples collected during pregnancy than postnatally. No statistically significant differences were
observed in infant's urinary phthalate concentrations between breast-fed and bottle-fed infants. Significant cor-
relations were observed between maternal urinary MEHHP (r = 0.35), MEOHP (r = 0.35) and MEP (r = 0.37)
collected at b20 weeks gestation with levels in meconium and between MBzP (r = 0.78) and MEP (r = 0.56)
inmaternal and infant urine collected 2–3months after birth. These results suggest at least somematernal-fetal-in-
fant transfer of phthalates and thatmeconiummay be a usefulmatrix formeasuring in utero exposure to phthalates.
Crown Copyright © 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Metabolites
Urine
Meconium
Infant
Pregnancy
Breast milk
1. Introduction
Prenatal and early post-natal exposures to elevated levels of certain
environmental chemicals may impact the health of the fetus and child
and have long lasting effects into adulthood. The development of sensi-
tive and specific biomarkers of exposure which can bemeasured inmul-
tiplematrices and at increasingly lower limits of detection has facilitated
research on potential health effects of chemicals that we are exposed to
in our daily life such as phthalates. Phthalates are a family of chemicals
found in a number of consumer products ranging from intravenous tub-
ing to vinylflooring. In Canada (Health Canada, 2011), the allowable con-
centrations of certain phthalates are restricted in soft vinyl toys and child
care articles. Diet, dust ingestion, inhalation, dermal absorption and di-
rect dermal uptake from air are potential contributors to human expo-
sure (Larsson et al., 2014; Serrano et al., 2014; Xu et al., 2015; Bekö
et al., 2013;Weschler et al., 2015). In Europe, themajor sources of expo-
sure to dimethyl (DMP), diethyl (DEP), butylbenzyl (BBzP), diisononyl
(DiNP), and diisodecyl (DiDP) phthalates are from the use of consumer
products and indoor sources, whereas food is amajor source of exposure
to diisobutyl (DiBP), di-n-butyl (DnBP), and di-2-ethylhexyl (DEHP)
phthalates (Wormuth et al., 2006). Phthalates do not bioaccumulate
and are mainly excreted in urine with phthalate mono esters generally
having shorter elimination half-lives than the oxidized metabolites. For
example, for DiBP, the estimated half-life for mono-isobutyl phthalate
(MiBP) is 3.9 h, in contrast to 4.1 and 4.2 h for the oxidized metabolites
3- and 2-hydroxy MiBP, respectively (Koch et al., 2012).

Numerous phthalates have been shown to possess estrogenic activ-
ity and show anti-androgenic effects (reviewed in Kiyama and
Wada-Kiyama, 2015; Marie et al., 2015). Although there is inconsis-
tency in the literature, a wide range of potential human health effects
have been associated with prenatal exposure to various phthalates in-
cluding preterm birth (Ferguson et al., 2014a, 2014b), adverse effects
on child behavior, intellectual and motor development (Whyatt et al.,
2012; Kim et al., 2011; Engel et al., 2009; Factor-Litvak et al., 2014),
and reduced anogenital distance in male infants (Bornehag et al.,
2015; Bustamante-Montes et al., 2013; Suzuki et al., 2012; Swan et al.,
2015). A systematic review of the toxicological literature has concluded
that there is sufficient evidence to suggest that phthalates are reproduc-
tive and developmental toxicants, albeit at concentrations higher than
those observed in contemporary human biomonitoring studies (Kay
et al., 2013). The European Union (2015) has classified DEHP, DnBP,
DiBP and BBzP as reproductive toxicants.

While several biomonitoring studies of phthalates in pregnant
women that measured exposure at multiple time points (Valvi et al.,
2015; Cantonwine et al., 2014; Braun et al., 2012; Adibi et al., 2008)
have been published, there is a paucity of data that has examined the
correlations between maternal and infant exposures in different
matrices. The P4 Study (Plastics and Personal-care Product use in Preg-
nancy) was designed to measure exposure to phthalates throughout
pregnancy and in the early post-natal period in a healthy Canadian pop-
ulation. Measuring phthalate metabolites in various matrices will assist
with estimating exposure for the fetus and young infant.

2. Methods

2.1. Study population

The P4 Study has been described in detail elsewhere (Fisher et al.,
2015; Arbuckle et al., 2015). Pregnant women (b20 weeks gestation)
were recruited at early prenatal clinics inOttawaCanadabetweenDecem-
ber 2009 and December 2010. In addition, posters and pamphlets were
distributed in the obstetrical andultrasound clinics of TheOttawaHospital
and physician offices. To be eligible, women had to be able to communi-
cate in English or French, be 18 years or older and planning on delivering
locally. Excluded were women with major medical conditions such as
renal disease, epilepsy, heart disease and cancer or with known fetal ab-
normalities or major malformations, and women already participating
in 2 or more research studies. The women were followed prospectively
through pregnancy and up to 2–3months postnatally. The study was ap-
proved by human studies ethics committees at Health Canada and all par-
ticipating hospitals; all participants signed informed consent forms.

2.2. Maternal urine collection

Womencollected serial urine samples over a24-hperiod atb20weeks
gestation on a weekday (T1a) and/or weekend day (T1b), as well as spot
urine voids during the 2nd (24–28 weeks) (T2) and 3rd trimesters (32–
36 weeks) (T3) and 2–3 months post-partum (T5). Women were asked
to collect and record the dates and times of all urine voids over the 24-h
periods. For the single spot urine voids (T2, T3 and T5), the time of the
void was noted. Urine was collected in prescreened urine cups (polypro-
pylene) and kept cool (4 °C) to avoid degradation of the chemical until
aliquoted within 36 h of collection and then stored at−80 °C.

2.3. Infant urine collection

Infant urine was collected within the first month of life (T4) and 2–
3 months post-partum (T5) in prescreened newborn urine-bags (U-
bags) (Hollister Inc. Libertyville, IL and Mabis Healthcare, Waukegan,
IL). The genital area was cleansed using only warm water and a wash-
cloth, allowed to air dry and then the U-bag was attached (maximum
4 h at a time). Multiple voids on the same day were combined in the
same sterile 30 mL Nalgene® container to obtain sufficient volume.
The date and time were noted and the urine refrigerated. Within 24 h
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of collection, the urine was delivered to the lab for processing and
aliquoting and then frozen at −80 °C.

2.4. Meconium collection

PrescreenedMère Hélène® bioliners (Mère Hélène, Quebec Canada)
were inserted into the diapers to facilitate collection of themeconium. A
wooden spatulawas used to transfer themeconium collectedwithin the
first two days after delivery to a 50mL Sarstedt® tube and frozenwithin
72 h of collection at −20 °C. Staff was asked to note if the diaper was
wet with urine and if any lotions, powders, wipes or creams had been
applied to the baby's bottom.

2.5. Breast milk and/or formula collection

The women were provided with instructions to collect a sample of
breast milk in a 150 mL glass jar 2–3 months post-partum. Either the
Medela® (Medela International, Zug, Switzerland) manual breast
pump provided or hand expression could be used to collect the milk.
Women were asked not to use any creams or cleansers on her breast
prior to pumping or expressing. Women who were not breastfeeding
or who were supplementing breastfeeding with formula were asked
to provide a sample of infant formula in the additional glass jar pro-
vided. All samples were kept refrigerated until delivered to the hospital
where samples were aliquoted into 30 mL Nalgene® containers and
then frozen at−20 °C, prior to shipping to the laboratory.

2.6. Screening for potential contamination

All materials used to collect or store biological samples were pre-
screened for potential phthalate contamination. Field blanks (Steril.O
reagent grade deionized distilled water) were included as part of the
protocol to assess potential risks of contamination at the collection
and aliquoting premises and during processing and storage of the spec-
imens prior to analysis.

For the home collection of maternal urine over the 24-h periods
(T1a, T1b), in addition to the urine collection cups and freezer packs,
each participant's cooler bag also contained a field blank. This blank
was appropriately labeled and underwent the same conditions as the
urine samples (i.e. kept in the cooler bag and then delivered to the hos-
pital lab with the urine samples, aliquoted, frozen and shipped to the
lab). A glass jar containing 50 mL of deionized water was included
with the empty containers in the participant kit for the breast milk col-
lection and underwent similar handling and processing to the breast
milk or formula collection.

To prepare field blanks for the infant urines, 5mL of deionizedwater
was added to sample U-bags, jostled to simulate infantmovementwhile
wearing the bag and left to sit at room temperature for at least 30 min,
then transferred from the U-bag into sterile 30mLNalgene® containers.
In addition, a supplemental study was conducted on the infant urine
bags (Mabis® Healthcare U-Bag newborn urine collector REF 7535, Lot
# 2E13 and 1A06) after specimen collections were completed. Five mil-
liliters of deionized water was added to the U-bag, using a disposable
glass pipette previously rinsed with 5 mL of methanol. The U-bag was
placed in an incubator with an agitator (Innova 4230) set to 50 RPM
at a temperature of 35 °C for 4 h and then refrigerated until analysis.
The contents of the bag were transferred into a 30 mL Nalgene® con-
tainer and a 1 mL sample was extracted. The previous steps were re-
peated with two other U-bags. These steps were also repeated using
low phthalate concentration urine (previously assayed to know the
urine concentrations of phthalates) instead of deionized water.

2.7. Data collection

Participants completed a short questionnaire at recruitment and at
each contact throughout the study. The questionnaire collected
information on occupation, socio-economic status, obstetrical history,
smoking and the current pregnancy. Data on infant feeding and care
practices were also collected post-partum. Additional information on
the pregnancy and the birth were abstracted from medical charts.
2.8. Laboratory chemical analysis for phthalate metabolites

Samples were shipped on dry ice to the laboratory where they were
stored frozen until analysis. The Centre de toxicologie du Québec,
Institut national de santé publique du Québec conducted all the
biospecimen analyses for phthalate metabolites. Specific gravity was
measured using a refractometer (Refractometer UG-1, Atago # 3461)
on urine that had undergone a freeze-thaw cycle. Specific gravity was
measured as correcting for urine dilution using creatinine is likely prob-
lematic for populations undergoing physiological changes in renal func-
tion such as pregnantwomen (Abduljalil et al., 2012; Gordon, 2012) and
young infants (Matos et al., 1999; Quigley, 2012) and for chemicals that
are rapidly metabolized and where exposure patterns may not be con-
tinuous and ongoing such as DEHP (Lorber et al., 2011).

Initially the biospecimenswere analyzed for 11 phthalatemetabolites
(group 1) for which the laboratory had previously developed methods:
MnBP, MCPP, MEP, MBzP, mono-methyl phthalate (MMP), mono-
cyclohexyl phthalate (MCHP), mono-isononyl phthalate (MiNP), mono-
n-octyl phthalate (MnOP), mono-(2-ethylhexyl) phthalate (MEHP),
mono-(2-ethyl-5-oxo-hexyl) phthalate Mono-(2-ethyl-5-oxo-hexyl)
phthalate (MEOHP), and mono-(2-ethyl-5-hydroxy-hexyl) phthalate
(MEHHP). Subsequently, new methods were developed for additional
important phthalate metabolites: mono-3-hydroxy-n-butyl phthalate
(MHBP), MCiOP, mono(hydroxy-isononyl) phthalate (MHiNP), mono
(2-carboxy-methylhexyl) phthalate (MCMHP), mono(2-ethyl-5-
carboxy-pentyl) phthalate (MECPP), MiBP, 2-hydroxy-mono-isobutyl
phthalate (2OH-MiBP), mono(oxo-isononyl) phthalate (MOiNP),
monohydroxyisodecyl phthalate (MHiDP), mono(carboxy-isononyl)
phthalate (MCiNP),and mono-(2-propyl-6oxoheptyl) phthalate
(MOiDP). However, these latter metabolites (group 2) were only mea-
sured in the serial urine samples of women who had contributed suffi-
cient urine samples in both the T1a and T1b collection periods (n = 31
women). Due to an issuewith the accuracy of several commercial phthal-
ate metabolite standards (Langlois et al., 2012), correction factors were
developed and applied to the phthalate results (Langlois et al., 2014).
2.8.1. Urine
For the first group of phthalate metabolites, following enrichment

with analogues of phthalates isotopically labeled with carbon 13 and
enzymatic deconjugation using β-glucuronidase, the phthalate mono-
ester compounds were extracted by solid phase extraction with anion
exchange media using the Janus robotic system. The extracts were
brought to dryness, solubilized in water and analyzed by LC–MS–MS
in MRM mode with an electrospray ion source in negative mode (Wa-
ters Acquity UPLC; tandem mass detector Waters Quattro Premier Xe).
The limits of detection for the phthalate metabolites ranged from 0.2
to 7.0 μg/L. As there was a contamination problem in several analytical
sequences, no infant urine MEHP results were reported.

For the phthalate metabolites of the second group, the urine sample
wasfirst enrichedwith analogues of phthalates isotopically labeledwith
carbon 13 (or deuterium) and diluted with water. Then an enzymatic
deconjugation using β-glucuronidase was performed. After liquid-
liquid extraction with a hexane/ethyl acetate mixture, the organic
phase was evaporated. The extract was then solubilized in an water:
acetonitrile solution and analyzed by LC-MS-MS in MRM mode with
an electrospray ion source in negativemode (Waters Acquity UPLC; tan-
dem mass detector Waters TQ-S or Quattro Premier Xe). The limits of
detection for this group of phthalate metabolites ranged from 0.056 to
0.3 μg/L.



Table 1
Characteristics of study participants with available biospecimens.

Characteristic Maternal
urine

Breast
milk

Meconium Infant
urine

Number of participants providing
biospecimens

80 56 54 61

Maternal education
High school 3.75% 3.57% 5.56% 3.28%
Some college or university 7.50 3.57 1.85 6.56
College 17.50 10.71 20.37 14.75
University 45.00 48.21 42.59 42.62
Graduate degree 26.25 33.93 29.63 32.79

Marital status
Married 78.75% 80.36% 77.78% 80.33%
Common-law 20.00 19.64 22.22 18.03
Single 1.25 0 0 1.64

Household income (n = 5 missing)
b$70,000 8.75% 5.36% 7.41% 6.56%
$70,000–100,000 30.00 28.57 25.93 27.87
N$100,000 55.00 62.50 61.11 59.02

Parity
0 46.25% 50.00% 48.15% 49.18%
1 42.50 41.07 40.74 40.98
2+ 11.3 8.9 11.1 9.8

Mean maternal age (years) 32.42 33.13 32.77 32.67
Maternal smoking status (early
pregnancy) (n = 2 missing)
Never 66.25% 69.64% 66.67% 63.93%
Ever 31.25 26.79 29.63 32.79

Maternal pre-pregnancy BMI (kg/m2)
Underweight (b18.50) 2.50% 3.57% 1.85% 1.64%
Normal (18.50–24.99) 60.00 62.50 62.96 59.02
Overweight (25.00–29.99) 18.75 17.86 16.67 21.31
Obese (N29.99) 7.50 8.93 9.26 8.20

Maternal country of birth
Canada 78.75% 78.57% 81.48% 78.69%
Outside Canada 21.25 21.43 18.52 21.31

Employed at Visit 1 (n = 1 missing) 81.25% 82.14% 83.33% 80.33%
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2.8.2. Breast milk and infant formula
Breast milk contains active esterases which can hydrolyze phthalate

diesters into their respective monoesters. It is recommended that milk
be pre-treated to denature the milk enzymes and avoid over-
estimating the concentration of phthalate metabolites present from di-
ester contamination during collection, storage or processing (Calafat
et al., 2004b). For the breast milk, the esterases in the milk were first
de-activated by adding 125 μL of 1 M H3PO4 to 0.5 mL of milk prior to
extraction. Following enzymatic deconjugation using β-glucuronidase
and enrichment with analogues of phthalates isotopically labeled with
carbon 13, the analytes were extracted on a solid phase extraction car-
tridge with an anion exchange support. The extracts are brought to dry-
ness, dissolved in ammonium acetate buffer and analyzed by LC-MS-MS
in MRM mode with an electrospray ion source in negative mode (Wa-
ters Acquity UPLC; tandem mass detector Waters TQ-S). The limits of
detection for this group of phthalate metabolites (group 1) ranged
from 9.4 to 91 ng/L.

2.8.3. Meconium
For themeconiummethod, 125 μL of 1M H3PO4 per g of meconium

was added to denature the endogenous esterases prior to extraction.
Following enzymatic deconjugation using β-glucuronidase and enrich-
ment with analogues of phthalates isotopically labeled with carbon
13, the analytes were extracted by a liquid-liquid extraction with
ethyl acetate as organic solvent. The extracts were brought to dryness,
dissolved in ammonium acetate buffer and analyzed by LC-MS-MS in
MRMmode with an electrospray ion source in negative mode (Waters
Acquity UPLC; tandemmass detectorWaters TQ-S). The limits of detec-
tion for this group of phthalatemetabolites (group 1) ranged from0.075
to 0.58 ng/g.

2.8.4. Quality control/quality assurance
For all the above methods and at each sequence performed, 2 re-

agent blanks were extracted and injected to ensure that no exogenous
interference interfered with the reported analyte concentrations. The
exactitude of the reported concentrations was ensured by monitoring
3 levels (low, mid, high) of quality controls (prepared in the same ma-
trix as the participant).

2.9. Statistical analysis

Descriptive statistics, such as geometric mean (GM) and 95% confi-
dence intervals (CI), median, and percentiles were calculated for unad-
justed and SG-adjusted urinary concentrations, breast milk, infant
formula and meconium. SG-adjusted metabolite concentrations were
calculated using the following formula (Hauser et al., 2004):

Pc=Pi [(SGm−1)/(SGi−1)]where Pc is the SG-adjusted metabolite
concentration (ng per mL), Pi is the observed metabolite concentration,
SGi is the specific gravity of the urine sample and SGm is the median SG
for the cohort (calculated separately for maternal versus infant urines).
Anymachine reading value below the limit of detectionwas used in the
calculations and zero values were replaced by 0.0001.

Only those metabolites with at least 30% of the samples exceeding
the LODwere examined further. As the datawere right skewed, the nat-
ural log transformed phthalate concentration was the outcome in the
models. Maternal urinary collection information (season, time of day,
collection period, and weekend/weekday) as well as infant characteris-
tics including gender, collection period and feeding practices were ex-
amined in relation to urinary concentrations using linear mixed
models. A separate model was run for each predictor variable, which
was included as a fixed effect with a random subject effect to account
for potential correlations of measurements within an individual. Spe-
cific gravity was included in all models as a covariate. Estimates were
produced using Restricted Maximum Likelihood (REML) estimation
and p-values were constructed using the Kenward Roger degrees of
freedom method.
Spearman correlations were calculated between T1 maternal urine
concentrations of phthalates. The Fisher z transformation was used to
approximate the 95% confidence limits. Using 1 minus the Spearman
correlation as the distancemeasure, an agglomerative hierarchical clus-
tering technique was used to group the metabolites into clusters. To
show a visual correlation between phthalates, heatmaps were plotted
using the Spearman correlation coefficients, including a dendrogram
which illustrates clusters that have been joined and the distance be-
tween clusters at the time of joining. Spearman correlations were also
calculated between each time point and matrix.

Data were analyzed using SAS Enterprise Guide (version 4.2; SAS In-
stitute, Cary, NC, USA) and R (version 3.1.1; Vienna, Austria).

3. Results

While our initial objective was to recruit women before the 14th
week of pregnancy, some women were hesitant to participate so early
in their pregnancy because they did not want others to know of their
pregnancy. Therefore the eligibility window was expanded to
19weeks, 6 days gestation in thewinter of 2010,which helped to signif-
icantly increase our participation rates. Table 1 presents characteristics
of the study participants who provided urine, breast milk, meconium
and infant urine samples. Most of the womenwere well educated, mar-
ried, had a household income exceeding $100,000 Canadian, were pri-
miparous or this was their second pregnancy, had never smoked,
were in their early 30's, were born in Canada, had a normal pre-
pregnancy BMI, and were employed. Although the numbers are small,
there did not appear to be any noticeable differences between the ex-
tents of a woman's participation in the various segments of the study.

No phthalatemetabolites were detected during pre-screening of the
diaper liners, urine containers, Sarstedt® tubes or the Medela® breast
milk pump; however, trace contamination from the urine bags with
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the mono metabolites such as MEP, MnBP and MEHP is possible (Sup-
plemental Material Table S1). The results of the field blank analysis
are presented in the Supplemental Material Table S2. While there is a
possibility that some of the biospecimen samples may have been con-
taminated with phthalates, the maximum value measured was gener-
ally below the 10th percentile of the metabolite distribution in the
biospecimens.

3.1. Maternal urine results

Descriptive statistics and limits of detection for the phthalatemetab-
olite concentrations from various matrices are shown in Supplemental
Table S3. Over the course of the study, all women had at least one
urine sample with detectable levels of the following metabolites (SG-
adjusted median, μg/L): MEP (26.90), MnBP (18.37), MHBP (1.49),
MiBP (7.49), 2OH-MiBP (4.42), MBzP (9.13), MCPP (2.08), MEHP
(2.77), MEHHP (13.08), MEOHP (8.34), MCMHP (2.97), MECPP
(10.73), MHiNP (2.02), MOiNP (1.57), MCiNP (0.94) and MOiDP
(0.24). At least 50% of thewomenhad at least one urine samplewith de-
tectable levels for: MMP, MCHP, and MHiDP. MnOP, MiNP and MCiOP
were rarely detected in maternal urine. However, for MCiOP there was
too much uncertainty in quantification as the retention times of peaks
from the samples significantly deviated from those from the calibration
standards. Therefore the non-detects do not necessarily imply that
MCiOP was not present.

Analysis of potential predictors of maternal urinary concentrations
including specific gravity as a covariate (Tables 2 and 3) showed that
compared to winter collections, levels were higher in the spring for
MBzP, MEHHP, MEHP and MOiDP, lower in the fall for MBzP and
MEHHP, and higher in the summer for MCPP, MEHP and MCMHP. In
regards to time of day when the urine was collected, compared to
urine collected between 4 pm and midnight, urine collected at other
times were significantly lower for all metabolites except for MnBP,
MBzP, 2OH-MiBP, and MiBP. Maternal urinary MEP concentrations
were highestwhen collected between 9 amand4 pm. TheDEHPmetab-
olites and MEP were significantly lower in urine collected after preg-
nancy. MnBP concentrations were higher in urine collected on a
weekend, while MBzP levels were lower, compared to a weekday
collection.

To examine clustering of chemicals, maternal urinary concentrations
of bisphenol A and triclosan (Arbuckle et al., 2015) from the same co-
hort were combined with the phthalate data. As expected, the DEHP
metabolites were highly correlated in maternal urine (r = 0.60–0.96)
and none of the phthalates were strongly correlated with triclosan or
bisphenol A concentrations (Fig. 1). An examination of how the T1 ma-
ternal urinarymetabolites clustered showed: a primary cluster of triclo-
san, MEP, MOiDP and MHiDP; another of BPA, MCiNP, MCPP, MOiNP,
and MHiNP; a third cluster of the DEHP metabolites (MEOHP, MEHHP,
MEHP, MECPP and MCMHP) and the final cluster of the DnBP and
DiBP metabolites and MBzP.

3.2. Breast milk and infant formula results

While MEHP, MnBP, MEP, and MMP were detected in all 56 breast
milk samples, MCPP, MCHP, and MiNP were not detected in any of the
samples (Supplemental Table S3). Most of the 23 infant formula sam-
ples had no detectable concentrations of phthalate metabolites with
the exception of MEHP, MnBP, MEP, and MMP. However, given the re-
sults of the field blank analysis (see SupplementalMaterial), these latter
results may be due to contamination.

3.3. Infant biospecimen results

All infants had at least one urine sample above the LOD for MnBP
(SG-adjusted median 4.37 μg/L) and MEP (SG-adjusted median
4.58 μg/L), with over 80% detected for MCPP, MBzP, MEHHP, and
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MEOHP (Supplemental Table S3). MEHP, MCPP, MBzP, MnBP, MEP,
MMP, MEHHP, and MEOHP were detected in at least 60% of the meco-
nium samples (Supplemental Table S3). Among those metabolites
with sufficient detection, all were higher in the older infants, with uri-
nary concentrations of MEOHP, MCPP and MEHHP significantly higher
in the older infants than in the neonates (Table 4). No differences in in-
fant urinary or meconium concentrations were observed by gender or
by infant feeding practices. Breast milk concentrations of MEP were sig-
nificantly higher when themilk was collected by manual pump than by
hand.

3.4. Correlations between matrices

There were weak correlations between SG-adjusted maternal T1
concentrations and meconium for MEHHP (r = 0.35), MEOHP (r =
0.35) and MEP (r = 0.37), and between maternal T5 and breast milk
concentrations for MnBP (r = 0.43) (Table 5). Moderate to strong pos-
itives correlations were observed between maternal and infant urine
concentrations at T5 for MBzP (r = 0.78), MnBP (r = 0.40), MCPP
(r = 0.41) and for MEP (r = 0.56).

4. Discussion

This study is among the first to measure exposure to phthalates
across pregnancy and into infancy combined with the analysis of multi-
ple matrices to demonstrate maternal-infant transfer for at least some
of the phthalates.

One of the main concerns with biomonitoring studies of ubiquitous
chemicals such as phthalates is potential external contamination of
the biospecimens by the collection, processing and transporting mate-
rials, laboratory reagents, sampling equipment, and analytical appara-
tus. One approach to limit misinterpretation of biomonitoring results
for these chemicals is to routinely measure biomarkers that cannot be
formed in the environment, such as the oxidized metabolites of
phthalates (Koch and Calafat, 2009). Potential external contamination
is a particular problem for the monoesters and especially in matrices
containing lipase activity such as breast milk and meconium, where
the lipases can cleave the contaminating phthalate into its monoester,
making them indistinguishable from the monoesters formed during
the body'smetabolismof the phthalate (Koch andAngerer, 2012). Addi-
tional approaches commonly used include using field blanks and re-
agent or quality control blanks and quality control samples (Ye et al.,
2013). In our study, while efforts to minimize contamination were
employed (e.g., pre-screening of biospecimen collection materials, in-
clusion of field blanks, addition of phosphoric acid to milk and meco-
nium), the possibility of contamination exists.

4.1. Maternal urine

It is difficult to draw any conclusions on whether pregnancy status
affects urinary phthalate concentrations as comparisons in the same
woman while pregnant and not pregnant are rare and inconsistent. In
our study, MEP, MEHHP, MEOHP, and MEHP urinary concentrations
were consistently higher in samples collected during pregnancy than
postnatally. A German study found median MEP concentrations were
higher during pregnancy (54.1 μg/L) than 2 months after delivery
(34 μg/L), whereas MBzP, MEHP, MEOHP and MEHHP were higher
post-pregnancy (W. Völkel, personal communication, 2015-07-13). In
contrast, Braun et al. (2012) measured phthalates in urine prior to and
during pregnancy and reported somewhat higher geometric mean uri-
nary concentrations of MEP prior to pregnancy (61 vs. 55 μg/L during
pregnancy); these levels were higher than in our P4 Study (where GM
was 33–42 μg/L during pregnancy and 23 μg/L post pregnancy).

A comparison of median urinary concentrations across pregnancy
and into the post-partum period between studies in Germany (Völkel
et al., 2014; Enke et al., 2013) and our study showed that for almost



Fig. 1. Cluster analysis and Spearman correlations between maternal urinary phthalates and phenols at T1 (b20 weeks gestation).
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every metabolite examined, except MMP and MCPP, concentrations in
our study were lower. This was especially true for MiBP, where median
concentrations were up to 10-fold higher in Germany (63.6 μg/L)
(Völkel et al., 2014) compared to our P4 data (6.6 μg/L. Other
European countries (Tefre de Renzy-Martin et al., 2014; Ye et al.,
2008; Valvi et al., 2015) also had higher MiBP concentrations during
pregnancy (medians ranging from 25.2 to 42.1 μg/L) than American
studies (4.0–4.4 μg/L) (Guo et al., 2014; Swan et al., 2015), suggesting
DiBP exposure from diet or non-dietary sources (Sakhi et al., 2014;
Koch et al., 2013; Wormuth et al., 2006) between the two continents
may differ. Similar to our results, Völkel et al. (2014) reported that
nearly all maternal urines were below the limit of detection for
MHiNP (7OH-MiNP), MCiNP (cx-MiDP), MHiDP (OH-MiDP), MiNP,
MHPP, and MnOP, while MEOHP (5oxo-MEHP), MECPP (5cx-MEPP),
MnBP and MiBP were found in all maternal samples.

The proportion of urinary concentrations of DEHP metabolites ap-
pear to be similar between those observed in non-pregnant adults
(MEHP 6.6%, MEHHP 29.7%, MEOHP 15.4%, MECPP 31.8%, MCMHP
10.3%) (Silva et al., 2006) and our study using a similar statistical ap-
proach for T1 urines (MEHP 7%, MEHHP 35%, MEOHP 22%, MECPP
28%, MCMHP 8%) (data not shown).

In comparison with other Canadian studies conducted by the same
laboratory,maternal phthalate concentrations in the P4 studywere sim-
ilar to or somewhat higher than those from a larger cohort of pregnant
women (Arbuckle et al., 2014). ForMEP, P4 unadjusted geometric mean
concentrations were lower (29.9 μg/L at T1) than those reported in a
population-based national survey of women of reproductive age
(43 μg/L) in Canada (Health Canada, 2013). Differences between the
socio-economic status of the study populations and the urine sampling
protocol (multiple versus single void) may have accounted for differ-
ences in the levels observed.

Our bivariate modeling suggested that even after adjustment for
specific gravity, maternal urinary concentrations were significantly as-
sociated with variables related to the urine collection such as season
and especially time of day when the urine was collected. The timing of
the sample relative to food consumption has a direct impact on the es-
timated exposure concentrations in spot urines (Janjua et al., 2008; Ye
et al., 2011). For most of the phthalates measured in our study, urine
collected any time between early morning and 4 pm had significantly
lower concentrations than those collected after 4 pm. This is in general
agreement with other studies (Cantonwine et al., 2014; Preau et al.,
2010; Valvi et al., 2015). These findings suggest that time of day should
be considered when designing a biomonitoring study, especially when
measuring multiple phthalates that will have different sources, fre-
quency and timing of use.

For a few phthalates we found that season was a significant predic-
tor. There were higher maternal levels of MBzP and MEHHP in the
spring and lower levels in the fall, compared to winter. Summer urine
collections were significantly higher in MCPP, MEHP and MCMHP than
those in the winter. In Germany, Hildenbrand et al. (2009) found a sig-
nificant trend towards higher levels of the DEHP metabolite MEHHP in
January (r= 0.64), while an American study found no significant differ-
ence for any phthalate measured by season (Peck et al., 2010).

A number of factors may be responsible for observed differences in
maternal urinary concentrations and factors associated with these con-
centrations, including: study populations that differ in size, ethnicity
and socio-economic status; frequency and timing of urine collection;
availability of different types of consumer products and food packaging
materials; and potential contamination of the urine samples.

Our cluster analysis identified four major clusters of maternal uri-
nary metabolites during early pregnancy: (1) the DEHP metabolites;
(2) triclosan, MEP, and 2 of the DiDP metabolites (oxo and OH);
(3) bisphenol A, 2 of the high molecular weight DiNP (oxo and OH)
and 1 of the DiDP (cx) metabolites plus MCPP, the non-specific metab-
olite of high molecular weight phthalates; and (4) the DiBP and DnBP
metabolites plus MBzP. As there is the potential for mixtures of endo-
crine disrupting chemicals to enhance the toxicity of the individual
chemicals (Sobolewski et al., 2014; Christiansen et al., 2012; Christen
et al., 2012), identifying clusters is important for risk assessments.
Other studies have reported positive correlations between various
phthalates and phenols in Danish (Tefre de Renzy-Martin et al., 2014)
andUS pregnantwomen (LaRocca et al., 2014), Greekmothers and chil-
dren (Myridakis et al., 2015) and in Flemish adolescents (Geens et al.,
2014).

4.2. Breast milk

Although the metabolites are more frequently detected in breast
milk, both the parent phthalate compounds and their metabolites can
be measured, indicating that both can be transferred from the woman
to her infant; the esterases in the milk could also cleave the diesters
into themetabolites (Fromme et al., 2011). As the addition of the inhib-
itor (phosphoric acid) to stop the esterase activity in breastmilkwas not
added until the sample was thawed in the laboratory, we cannot rule



Table 4
Univariate associations between major phthalate metabolites in infant urine (all samples, specific gravity-adjusted) and meconium with infant characteristics.

Covariates MEHP MnBP MEP MEOHP MCPP MBzP MEHHP MMP

GM (95% CI) p-Value GM (95% CI) p-Value GM (95% CI) p-Value GM (95% CI) p-Value GM (95% CI) p-Value GM (95% CI) p-Value GM (95% CI) p-Value GM (95% CI) p-Value

Infant urine
Visit

T4 (n = 45) N/A 3.76 (2.94, 4.82) 0.14 4.80 (3.10, 7.45) 0.35 0.72 (0.57,
0.91)

0.02 0.62 (0.46,
0.83)

0.04 1.32 (0.88,
2.00)

0.055 0.68 (0.53,
0.86)

0.0007 N/A

T5 (n = 55) N/A 4.79 (3.85, 5.95) 5.95 (4.73, 7.49) 0.98 (0.76,
1.27)

1.00 (0.72,
1.39)

2.29 (1.57,
3.35)

1.03 (0.81,
1.31)

Gender
Female (n = 47) N/A 4.34 (3.41, 5.52) 0.70 5.27 (3.50, 7.94) 0.82 0.91 (0.68,

1.22)
0.62 0.73 (0.52,

1.01)
0.46 1.89 (1.20,

2.97)
0.64 0.88 (0.65,

1.19)
0.76 N/A

Male (n = 46) N/A 4.00 (3.11, 5.13) 5.58 (4.24, 7.32) 0.79 (0.62,
1.00)

0.88 (0.61,
1.27)

1.64 (1.09,
2.47)

0.80 (0.63,
1.01)

Infant feedinga

Exclusively breastfed (n
= 21)

N/A 5.54 (4.08, 7.51) Ref 6.33 (4.27, 9.39) Ref 0.84 (0.64,
1.11)

Ref 1.41 (0.82,
2.41)

Ref 3.13 (1.82,
5.37)

Ref 0.84 (0.64,
1.10)

Ref N/A

Exclusively formula (n =
6)

N/A 5.05 (2.44, 10.46) 0.80 6.98 (3.19, 15.27) 0.81 1.02 (0.38,
2.75)

0.65 0.94 (0.27,
3.22)

0.47 2.74 (0.43,
17.45)

0.84 1.14 (0.49,
2.65)

0.45 N/A

Combination of the two
(n = 26)

N/A 4.51 (3.11, 6.53) 0.408 5.55 (3.85, 8.00) 0.61 1.07 (0.68,
1.66)

0.40 0.83 (0.49,
1.41)

0.16 1.82 (1.01,
3.27)

0.20 1.13 (0.74,
1.73)

0.27 N/A

Meconium
Infant gender

Female (n = 27) 0.76 (0.49,
1.19)

0.61 2.01 (1.32, 3.05) 0.82 1.31 (0.88, 1.97) 0.72 0.13 (0.06,
0.26)

0.92 1.36 (1.04,
1.77)

0.52 0.45 (0.28,
0.71)

0.89 0.45 (0.31,
0.65)

0.25 0.06 (0.01,
0.27)

0.39

Male (n = 24) 0.93 (0.46,
1.90)

2.14 (1.43, 3.21) 1.46 (0.94, 2.28) 0.13 (0.10,
0.18)

1.19 (0.87,
1.65)

0.42 (0.23,
0.79)

0.34 (0.26,
0.46)

0.02 (0.00,
0.13)

Breast milk
Collected by

Hand (n = 16) 1.36 (0.97,
1.89)

0.97 0.58 (0.41, 0.83) 0.50 0.17 (0.11, 0.27) 0.001 N/A N/A N/A N/A 0.47 (0.33,
0.67)

0.16

Manual pump (n = 20) 1.37 (1.00,
1.88)

Ref 0.71 (0.46, 1.09) Ref 0.44 (0.30, 0.65) Ref N/A N/A N/A N/A 0.66 (0.51,
0.86)

Ref

Electrical pump (n = 17) 1.66 (1.11,
2.50)

0.41 0.94 (0.59, 1.49) 0.31 0.28 (0.19, 0.43) 0.10 N/A N/A N/A N/A 0.52 (0.33,
0.81)

0.30

N/A: not available due to contamination problems.
Ref: referent group for statistical comparisons.

a Based on T5 infant urine.
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Table 5
Significant (p b 0.05) Spearman correlations (r) (with 95% confidence intervals) between specific gravity adjustedmaternal and infant urinary concentrations, breast milk andmeconium
concentrations of phthalate metabolites.

Phthalate
metabolite

MT1 maternal urine
(b20 weeks)

MT2 maternal urine
(24–28 weeks)

MT3 maternal urine
(32–36 weeks)

MT5 maternal urine (2–3 mo
post-partum)

IT4 infant urine
(b1 mo)

IT5 infant urine
(2–3 mo)

MEHP MT2 r = 0.47 (0.27,
0.64)
MT3 r = 0.26 (0.02,
0.47)

MT3 r = 0.29 (0.04, 0.50) T5 r = 0.40 (0.13, 0.62)

MEHHP MT2 r = 0.33 (0.10,
0.52)
Mec r = 0.35 (0.09,
0.57)

IT5 r = 0.56 (0.27,
0.76)

MEOHP MT2 r = 0.35 (0.13,
0.54)
Mec r = 0.35 (0.08,
0.57)

MT3 r = 0.26 (0.02, 0.47)
MT5 r = 0.30 (0.05, 0.52)

MT5 r = 0.28 (0.03,
0.50)

IT5 r = 0.50 (0.19,
0.72)

MnBP MT2 r = 0.52 (0.33,
0.67)
MT3 r = 0.37 (0.15,
0.56)
MT5 r = 0.28 (0.04,
0.49)
IT4 r = 0.49 (0.20, 0.70)
IT5 r = 0.28 (0.01, 0.52)

MT3 r = 0.39 (0.16, 0.57)
MT5 r = 0.29 (0.04, 0.51)

MT5 r = 0.54 (0.32,
0.70)
IT4 r = 0.36 (0.03, 0.62)
IT5 r = 0.33 (0.05, 0.56)
For r = −0.71 (−0.88,
−0.38)

IT5 r = 0.40 (0.14, 0.61)
BM r = 0.43 (0.18, 0.62)

IT5 r = 0.39 (0.05,
0.64)

MBzP MT2 r = 0.46 (0.25,
0.63)
MT3 r = 0.34 (0.11,
0.53)
IT5 r = −0.30 (−0.54,
−0.02)

IT4 r = 0.41 (0.09, 0.70) MT5 r = 0.30 (0.04,
0.51)
IT4 r = 0.39 (0.05, 0.64)
BM r = 0.31 (0.04, 0.53)

IT5 r = 0.78 (0.64, 0.87)

MCPP MT2 r = 0.26 (0.03,
0.47)

IT4 r = − −0.34 (−0.60,
−0.01)

IT5 r = 0.41 (0.13, 0.62) Mec r = 0.37 (0.04,
0.63)

MEP MT2 r = 0.71
(0.57, 0.81)
MT3 r = 0.41 (0.19,
0.58)
MT5 r = 0.50 (0.29,
0.66)
Mec r = 0.37 (0.11,
0.59)
BM r = 0.27 (0.01, 0.50)

MT3 r = 0.51 (0.30, 0.67)
MT5 r = 0.40 (0.16, 0.59)
IT4 r = 0.37 (0.05, 0.62)
Mec r = 0.34 (0.06, 0.57)
BM r = 0.36 (0.10, 0.58)

MT5 r = 0.47 (0.24,
0.65)
IT5 r = 0.29 (0.01, 0.53)
Mec r = 0.34 (0.07,
0.56)
BM r = 0.27 (0.01, 0.51)

IT5 r = 0.56 (0.33, 0.72)
Mec r = 0.30 (0.01, 0.55)
BM r = 0.28 (0.02, 0.50)

IT5 r = 0.52 (0.21,
0.73)
BM r = 0.35 (0.01,
0.61)

BM r = 0.34 (0.04,
0.58)
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out the hydrolysis of phthalate diesters intomonoesters in our study. So
an unknown amount of the monoesters measured may have arisen
from enzyme-induced hydrolysis of diesters or contaminants from the
process of collection and handling.

The long-branched and/or hydrophobic phthalates such as DnBP,
DEHP and DiNP may be excreted unmetabolized or as the primary
monoesters in breast milk, which may signal an alternative metabolic
pathway for phthalates in breast-feeding women (Frederiksen et al.,
2007). In our study, MEHP, MnBP, MEP, and MMP were detected in all
breast milk samples, while MCPP, MCHP, and MiNP were not detected.
Due to problemswith contamination,MEHP is likely an unreliablemea-
surement of DEHP exposure (de Cock et al., 2014); however, the oxi-
dized metabolites MEHHP and MEOHP were detected in over 80% of
our breast milk samples indicating DEHP transfer to the breast milk.

Median concentrations of MEP, MEHP, MnBP, MBzP, MEHHP,
MEOHP and MiNP in breast milk were lower in our study compared to
samples collected in Europe (Main et al., 2006; Schlumpf et al., 2010;
Latini et al., 2009; Fromme et al., 2011) and Asia (Kim et al., 2015; Lin
et al., 2011) (Supplemental Table S4).

The only phthalate concentration in breastmilk that differed by how
it was collected was MEP, where hand expression resulted in signifi-
cantly lower concentrations (GM: 0.17 μg/L) compared to the manual
pump (GM: 0.44 μg/L). Our screening did not suggest that the manual
pump provided would be a source of MEP contamination, so the reason
for this difference is unknown. Mortensen et al. (2005) reported no sig-
nificant differences between concentrations of MMP, MBzP, MEHP or
MiNP in breast milk samples collected with or without a breast pump,
but did find significantly higher levels of MEP andMnBP in samples col-
lected with a pump.
An earlier US study has reported that high urinary concentrations of
phthalate metabolites did not predict concentrations in breast milk
(Hines et al., 2009). However, we observed some correlation (r =
0.43) between maternal urine and breast milk MnBP collected at the
same time and between all maternal and infant urines and breast milk
for MEP.

Median MEP concentrations in breast milk were 100-fold lower
(0.25 μg/L) compared to all maternal urinary concentrations (27 μg/L).
MnBP concentrations were also lower (0.66 μg/L) in breast milk than
in maternal urine collected at the same time (19 μg/L), as was MMP
(breast milk 0.56 μg/L; post-parturition maternal urine 5.0 μg/L).
Given that MEP is generally the phthalate with the highest urinary con-
centration but one of the lowest in breastmilk, these results suggest dif-
ferent rates of maternal-breast milk transfer for these phthalates.

4.3. Infant formula

WhileMEHP,MnBP,MEP, andMMPwere detected in someof the in-
fant formula samples, there were no significant correlations with infant
urine concentrations. In Denmark, higher concentrations of MnBP and
MEHP were detected in infant formula than in our study, but MMP,
MEP, and MBzP were not detected (Mortensen et al., 2005).

4.4. Infant urine

In our studyMnBP andMEPwere detected in all infant urines. In the
younger infants (less than onemonth of age),MEHHP andMEOHPwere
present in the majority of urine samples. The presence of highly oxi-
dized phthalate metabolites in neonatal urine supports the hypothesis
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that the placenta is not an effective barrier for these metabolites (Enke
et al., 2013). Our finding of MEHHP and MEOHP in the meconium
would also lend support to this hypothesis.

Comparison of urinary concentrations of phthalates in young infants
suggest that levels in Canadian infants are substantially lower than
those reported in Germany (Enke et al., 2013; Völkel et al., 2014) and
Finland (Frederiksen et al., 2014) (Supplemental Table S5). In a German
study, only MiBP was quantified in every infant urine sample with the
highest levels of all metabolites observed at 5 months of age and
DEHP metabolites showing a continuous increase in concentration be-
tween 1 and 5 months of age (Völkel et al., 2014). However another
study reported that infant urinary concentrations were relatively con-
sistent between 1 and 6months of age (Frederiksen et al., 2014). Similar
to the German study (Enke et al., 2013),most phthalatemetabolite con-
centrations in our study were higher in the older infants and no signif-
icant differences were observed between male and female urinary
concentrations.

Although the geometric mean concentrations of MEHP, MnBP, MEP
and MMP were higher in breast milk than infant formula, the results
of our study would suggest that infant exposure to phthalates from
breastmilk or infant formulawould be lowaswe did not find any statis-
tically significant differences in the infant's urinary phthalate concentra-
tions between breast-fed and bottle-fed infants. A Finnish study has
reported that gender and breastfeeding versus bottle-feeding were not
associated with infant urinary concentrations of phthalates, which sug-
gested that diet was not the primary source of exposure for the young
infants (Frederiksen et al., 2014). In addition to diet, other sources of
phthalate exposure include consumer products (Sathyanarayana et al.,
2008), indoor dust and air (Fromme et al., 2013; Bekö et al., 2013;
Kubwabo et al., 2013) and PVC flooring (Carlstedt et al., 2013).

4.5. Ratio of MEHHP to MEOHP in urine

Examining the ratio of MEHHP to MEOHP concentrations in urine
may provide some insight into differences in the metabolism of DEHP
by various sub-populations. In our study, the ratio of medians of
MEHHP/MEOHP for all maternal urines was 1.5, similar to the mean
ratio of 1.4 reported in US (Barr et al., 2003) and German (Koch et al.,
2003) studies of adults and children. The ratio of medians for MEHHP/
MEOHP in our infants increased as they aged (0.78 vs. 1.04) and was
even higher in meconium (3.08). A Finish study also reported changes
in the proportion of oxidized metabolites of DEHP in infants from
birth to 14months of age consistentwithmaturation of infantmetabolic
pathwayswith the hydroxylatedmetaboliteMEHHP increasing from on
average of 18% to 39% but less so for the oxo metabolite MEOHP which
increased from 13% to 20% (Frederiksen et al., 2014). Among six prema-
ture infants in neonatal intensive care units, the MEHHP/MEOHP ratio
varied from 0.9 to 1.7 (Calafat et al., 2004a), while in children 3–
14 years of age the ratio was 1.3 and did not vary by age (Becker et al.,
2004). The change in the ratios of hydroxyl to oxo metabolites of
DEHP for these populations may be related to the ability of infants to
metabolize DEHP compared to adults. In an adult oral dosing study,
21% of the applied dose was excreted in urine as MEHHP within the
first 10 h compared to 13% for MEOHP, indicating differences in the
rate of elimination of these two metabolites (Koch et al., 2004). Differ-
ences between adults and infants in toxicokinetics and metabolism
have been well documented (Anderson and Holford, 2013), especially
for some phthalates (Enke et al., 2013).

4.6. Meconium

Meconium is the early feces passed by the newborn and begins to
form as early as the 12-13thweek of gestation. It can be a cumulative re-
pository of the chemicals that the fetus is exposed to throughout preg-
nancy and may be a better matrix to measure prenatal exposure to
short-lived chemicals such as phthalates.
Published reports of phthalate levels in meconium are very lim-
ited. MEHP has been measured in three Chinese studies that all re-
ported very high median concentrations of approximately 3800 μg/
g (Li et al., 2013), 2.9 mg/g (Zhang et al., 2009), and 163.8 μg/g (Xie
et al., 2015), compared to our study (median 0.64 ng/g). Median
MnBP concentrations were also elevated in the Zhang et al. (2009)
(1.7 mg/g) and Xie et al. (2015) studies (101.70 μg/g), versus the
P4 study (2.09 ng/g). Among 5 American meconium samples, the av-
erage concentrations of MEOHP andMEHHPwere 3.26 and 3.76 ng/g,
respectively (Kato et al., 2006), higher than median concentrations
reported here (0.12 and 0.37 ng/g for MEOHP and MEHHP). Another
study of 5 meconium samples reported that only MECPP and a few
other DEHP metabolites were found in meconium (Frederiksen
et al., 2007).

The endogenous esterase activity in meconium has been mea-
sured in one study, which suggested that the esterases in meconium
could hydrolyze phthalate diesters into monoesters (Kato et al.,
2006) and explain the higher MEHP levels measured in some studies
((Li et al., 2013; Zhang et al., 2009; Xie et al., 2015). Meconium
specimens should be treated to deactivate the enzymes after collec-
tion or collected in phthalate-free containers (both approaches were
adopted in our study) (Kato et al., 2006). As the addition of the inhib-
itor to stop the esterase activity inmeconiumwas not added until the
sample was thawed in the laboratory, we cannot rule out the hydro-
lysis of phthalate diesters into monoesters. However, our very low
results compared to other studies would suggest that this was not
an issue in our analysis.

There is some concern that meconium may be contaminated by in-
fant urine which would impact interpretation of these results. We
were unable to confirm whether there was urine in the diaper when
the meconium was collected. If cross-contamination of the meconium
sample with urine occurred, this would reflect exposure during gesta-
tion as well as after birth (Calafat and Needham, 2009). However, we
found no correlation between phthalate concentrations measured in
meconium and infant urine at T4.

Lotions, wipes or powders used on the baby or the diaper itself
may also be a source of contamination. In a few cases in our
study, the provided diaper liner was not used. Vaseline® and
Pampers® wipes were commonly used in the Ottawa hospitals
and it is unlikely that they were a source of phthalates (Health
Canada, 2014). Although detection frequencies and concentrations
were low, US studies have reported DMP, DEP, DBP and DEHP in
baby care products such as diaper cream and powder (Guo and
Kannan, 2013), and body wash and moisturizer (Lampel and
Jacob, 2011). Similarly in Canada, detection frequencies were very
low for baby oils and diaper creams (Koniecki et al., 2011). In addi-
tion, loss of moisture from meconium to the diaper may affect the
concentration later measured.

Statistically significant positive correlations (r = 0.35–0.37) were
observed between T1 maternal urinary and infant meconium concen-
trations of MEHHP, MEOHP, and MEP, suggesting in utero exposure
for the fetus.
5. Strengths and limitations

The strengths of this study include: (1) the collection of multiple
maternal urine voids within a day and over the course of pregnancy
and into the early post-partum period; (2) analysis of infant meconium,
infant urine and breast milk from the same cohort; (3) urinary data on
22 phthalate metabolites during pregnancy; and (4) extensive use of
field blanks to identify major sources of contamination. The major lim-
itations of this study are the small and highly educated study population
which will limit the generalizability of these results to other popula-
tions, as well as no data on the group 2 metabolites in the infant urine,
meconium and breast milk.
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6. Conclusions

Although a number of phthalates were detected in maternal and in-
fant urine and breast milk from this study, concentrations tended to be
lower than those reported in other international studies, particularly
from Europe. The lower levels observed in this study compared to
other regions, may be due to differences in study populations, food
packaging, diet and consumer products. Meconium shows some prom-
ise as a matrix for evaluating fetal exposure to phthalates. Some signif-
icant correlations were observed between MEHHP, MEOHP and MEP
metabolites in maternal urine at T1 with levels in meconium, and be-
tween MnBP and MEP levels in post-natal maternal urine and breast
milk. Maternal and infant urinary concentrations of MBzP, MCPP,
MnBP and MEP collected at T5 were also correlated. These results sug-
gest at least somematernal-fetal-infant transfer of phthalates. Extensive
incorporation of field blanks into phthalate biomonitoring studies is
critical to identify and consider potential sources of contamination.
Given the significant associations observed between maternal urinary
concentrations and time of day of urine collection, this is an important
factor to consider when designing and analyzing biomonitoring studies.
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