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Abstract

Purpose

To investigate the influences of smartphone use on ocular symptoms, status of the tear film,

and oxidative stress indices in the tears and at the ocular surface.

Methods

Eighty healthy volunteers were enrolled in the study. Subjective symptoms and asthenopia

were evaluated using the ocular surface disease index (OSDI), visual analogue scale

(VAS), and computer vision syndrome (CVS) score before and after smartphone or com-

puter display (control) use. The status of the tear film was evaluated using fluorescein film

break-up time (FBUT), non-invasive keratograph break up time (NIKBUT), Schirmer score,

keratoepitheliopathy (KEP), and tear meniscus height (TMH). Oxidative stress markers in

the tear film including hexanoyl lysine (HEL), 4-hydroxy-2-nonenal (4-HNE), malondialde-

hyde (MDA), and 8-oxo-2’-deoxyguanosine (8-OHdG) in the tear film were measured using

ELISA. Reactive oxygen species (ROS) at the ocular surface were measured through 2’,7’-

dichloro-dihydrofluorescein diacetate. All measurements were conducted at baseline, and

after use for 1 and 4 h.

Results

All parameters showed no significant group-wise differences at baseline. Scores of OSDI,

VAS, fatigue, burning sensation, and dryness showed significant increases after 1 and 4 h

of smartphone use compared with those at baseline (all P < 0.05). The smartphone group

showed higher OSDI, fatigue, burning, and dryness scores than the control group at 4 h.

Smartphone use showed significantly decreased FBUT and NIBUT at 4 h than those at

baseline (P < 0.01). In the smartphone group, the concentration of HEL significantly

increased at 4 h compared with that at baseline and 1 h (P < 0.01). Both groups showed

increased ROS with higher value in the smartphone group versus the control group at 4 h

(P < 0.01).
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Conclusions

Smartphone use could not only aggravate subjective symptom indices such as the OSDI,

VAS, and CVS but also induce tear film instability and oxidative stress indices in the tears

and at the ocular surface.

Introduction

Visual display terminal (VDT) use is increasingly common not only in VDT workers but also

in the general population due to the widespread use of mobile devices and smart phones.[1]

Smartphone use has significant impact on daily life activity. Smartphones enable varied activi-

ties including browsing the web, watching video, group chatting, and social networking as

compared to those in the previous generation. Therefore, time spent viewing at display screens

has increased with the use of smartphone use than ordinary cellular phone. One study reported

that the average time spent using a smartphone nearly doubled from 98 minutes per day in

2011 to 195 minutes in 2013.[2]

Previous studies reported that ordinary cellular phones affect human health as well as daily

life. Cellular phone use correlates with many health problems such as sleep disorder, head-

aches, leukemia, brain tumors and malignant melanoma of the eyes.[3,4] With the increasing

use of smartphones, recent studies have reported an association between ocular health and

smartphone use. One study reported two cases of transient monocular vision loss associated

with smartphone use.[5] Excessive use of smartphone also led to acute acquired comitant eso-

tropia in adolescents.[6] A study including subjects with pediatric dry eye disease (DED)

reported that the rate and mean time spent using smartphones were greater in the DED than

the non-DED group.[7] Because increased time of use of smartphone is related to DED, exces-

sive use of smartphones may affect the tear film and the ocular surface. Office workers who

spent more than 4 h watching VDT experienced severe ocular symptoms, similarly, excessive

smartphone use has been associated with multiple ocular symptoms.[3,8] Our recent study

indicated that blue light emitted from the smartphone screen had adverse effect on the corneal

epithelial cells in humans.[9] Overexposure to blue light caused deterioration of the tear film

and increased levels of inflammatory markers and reactive oxygen species (ROS) production

at the ocular surface of mice.[10]

To the best of our knowledge, any study related to the ocular symptoms, signs or oxidative

stress indices at the tears or the ocular surface associated with smartphone use has not been

reported yet. In the present study, we investigated the comparative effects of the use of smart-

phone and computer display on the subjective ocular asthenopia, tear film status, and oxidative

marker levels in healthy subjects.

Materials and methods

Study population

This study was a prospective, nonrandomized, comparative clinical study to evaluate the

effects of smartphone and computer display usage on subjective symptoms and changes in the

tear film and ocular. Eighty volunteers who were healthy adults without ocular disease, sys-

temic disease which could affect ocular condition, contact lens use, or surgical history were

included. Subjects who used eye drops or were pregnant at the time of the study were excluded.

The study was conducted in accordance with the Declaration of Helsinki. Written informed

The influence of smartphone use

PLOS ONE | https://doi.org/10.1371/journal.pone.0206541 October 31, 2018 2 / 16

design, data collection or analysis, in the decision

to publish, or in manuscript preparation. The

authors have no proprietary or commercial interest

in any material described in this article.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0206541


consent was obtained from all subjects, and the protocol was approved by the Institutional

Review Board of Chonnam National University Hospital. The study was registered with The

ISRCTN registry. (ISRCTN17257070) The report of the study followed the TREND guideline

(S1 TREND Checklist). Study protocols are included as Supplemental files (S1 and S2 Proto-

cols.) The healthy volunteers were assigned to either the smartphone (n = 50) or computer dis-

play (n = 30; control) groups. A flow diagram of the participants is shown in Fig 1. In the

smartphone group, subjects used the same smartphone with a 5.1 in light emitting diode

(LED) screen from the same manufacturer (Galaxy S6, Samsung, Seoul, South Korea). In the

control group, subjects used the same computer display with a 19.0 in screen (Samsung). The

illumination intensity was fixed at 80% of maximum brightness. The distance and angle

between the screen of display and the subjects was limited to constant value. All subjects were

asked to play a puzzle game.

Assessment of subjective ocular symptoms and asthenopia

All examinations were performed in 20 subjects per day, for 4 d, before and after 1 h and 4 h of

smartphone or computer display use, by a single investigator (KCY). Examination was conducted

in the same outpatient clinic with constant temperature and humidity at the same time of day.

Parameters of the tear film and ocular surface were evaluated within 15 min in the following

order: Non-invasive keratograph break-up (NIKBUT), tear meniscus height (TMH), fluorescein

break-up time (FBUT), keratoepitheliopathy (KEP) score, Schirmer test value, and tear sampling

data. In all subjects, testing time and sequence was per standardized protocol. After examination

at baseline and 1 h, subjects started viewing the smartphone or computer display.

Subjective ocular symptoms and asthenopia were evaluated using the ocular surface disease

index (OSDI), visual analogue scale (VAS), and computer vision syndrome (CVS) score before

and after use for 1 h and 4 h of use. The OSDI questionnaire included the following subscales:

(1) Ocular symptoms (OSDI symptoms), (2) vision-related activities in daily living (OSDI

visual function), and (3) environmental triggers (OSDI triggers).[11] The total OSDI score and

each subscale score, ranging from 0 to 100, were analyzed.[11] Changes in ocular fatigue before

and after smartphone use were examined by means of VAS test to assess subjective asthenopia.

We used a form with a scale of 0, I have no fatigue to 100, I feel extremely fatigued marked on

the extreme ends of a 100-mm line.[12] We used the modified questionnaire of Ames et al.[13]

to evaluate the CVS score. The questionnaires included five questions on the severity of fatigue,

burning, dryness, blurred vision, and dullness associated with subjective asthenopia; each

question was graded on a numerical scale of 0–6, with 0 defined as none and 6 as most severe.

All subjects completed the questionnaire before use and immediately after 1 h and 4 h use.

Assessment of status of the tear film

FBUT and Schirmer score were measured as previously described.[14] FBUT was evaluated 2

min after instillation of 2 mL of 0.5% fluorescein (Alcon, Fort Worth, TX, USA). Subjects were

subsequently asked to blink several times. The time in seconds between the last complete blink

and the appearance of the first corneal black spot was measured three times, and the mean

value was recorded. The Schirmer test was performed 5 min after instillation of a 10 μL of

0.5% fluorescein (Alcon) and 0.5% proparacaine hydrochloride, dropwise in the conjunctival

sac. A standard Schirmer test strip was then placed in the lateral canthus for another 5 min

with the eyes closed. The length of strip wetting was measured using the millimeter scale. Kera-

toepitheliopathy was scored by multiplying the area score by density score after staining with

0.5% fluorescein dye. The staining area was graded on a numerical scale of 0–3, with 0 repre-

senting no punctate staining; 1, less than one-third; 2, one-third to two-thirds; and 3, more
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than two-thirds. The staining density was graded on a numerical scale of 0–3, with 0 represent-

ing no punctate staining; 1, sparse density; 2, moderate density; and 3, high density with over-

lapping lesions.[15]

Non-invasive keratograph break-up (NIKBUT) and tear meniscus height (TMH) were

measured using Keratograph 5M (Oculus GmbH, Wetzlar, Germany). All measurements were

performed three times, before and immediately after 1 h and 4 h smartphone or computer dis-

play use.[16–18] Room temperature and humidity were maintained at 20–25˚C and 30–40%,

respectively.[17,18] NIKBUT was evaluated using an infrared diode video program in Kerato-

graph 5M. The NIKBUT-average (average time of all tear film breakups) was analyzed. TMH

was evaluated using four infrared diodes under deactivation of red ring illumination, and

graded perpendicular to the lid margin at the 6 o’clock position of the corneal midline.[19]

Tear collection

Basal tear samples were carefully obtained to avoid touching the ocular surfaces from the infe-

rior tear meniscus of both eyes by using glass capillary tubes (Corning, Inc., Corning, NY,

Fig 1. Flow chart showing subject enrollment, allocation, follow up, and analysis.

https://doi.org/10.1371/journal.pone.0206541.g001
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USA) or micropipettes (Eppendorf, Hamburg, Germany) before and immediately after 1 h

and 4 h of smartphone use as described previously.[20] Twenty microliter tear samples were

obtained and diluted with phosphate-buffered saline. Tear samples were placed in microtubes

and stored at −70˚C until further examination.

Measurement of oxidation markers using ELISA

Total protein levels of the oxidation stress markers, hexanoyl lysine (HEL, JaICA, Haruoka,

Japan), 4-hydroxy-2-nonenal (4-HNE, Cell Biolabs, San Diego, CA, USA), malondialdehyde

(MDA, Cell Biolabs), and 8-oxo-2’-deoxyguanosine (8-OHdG, Cell Biolabs), in the subject‘s

tears were detected using ELISA according to the manufacturer’s instructions. Tear concentra-

tion of HEL was measured using commercially available HEL ELISA, as reported previously.

[21] Protein samples (100 μL, 10 μg/mL) of 4-HNE, MDA, and 8-OHdG were absorbed onto a

96-well plate for 2 h at 37˚C. The minimal detectable concentrations of HEL, 4-HNE, MDA

and 8-OHdG were above 2.6 nmol/L, 0.078 μg/mL, 2 pmol/mg, and 100pg/mL, respectively.

Measurement of cellular reactive oxygen species production through

conjunctival Impression cytology

The 2’,7’-dichlorodihydrofluorescein diacetate (DCF-DA) assay kit, a cellular reactive oxygen

detection kit, was used to measure cellular ROS production according to the manufacturer’s

protocol. DCF-DA is a non-fluorescent and membrane permeable compound that becomes

fluorescent and membrane impermeable after oxidation.[10] Cell collection to evaluate ROS

level through impression cytology was performed as follows: A piece of cellulose acetate filter

paper (MFS membrane filters, Advantec MFS, Dublin, CA), approximately 6.2-mm in diame-

ter, was applied, dull side down, to the lower nasal bulbar conjunctiva adjacent to the corneal

limbus under topical anesthesia with 0.5% proparacaine hydrochloride. An investigator

pressed the filter gently with blunt, smooth-tipped forceps for 5 to 10 s. The paper was imme-

diately placed into a well of a 96-well plate containing 200 μL of Krebs-Ringer bicarbonate

buffer. The cells were incubated in the dark with 20 μg/mL of 2’7’-dichlorofluorescein for 30

min at 37˚C. The plates were read at excitation of 480 nm and emission of 530 nm (FACSCali-

bur cytometer; BD Biosciences, San Jose, CA, USA).[22]

Statistical analysis

Statistical Package for the Social Sciences software version 18.0 (SPSS, Inc, Chicago, IL, USA)

was used for all statistical analyses. Data are presented as the mean ± standard deviation. Wil-

coxon signed rank test was used to assess changes in the various parameters before and after 1

h and 4 h of smartphone or computer display use. Mann-Whitney U test was used to compare

results between the two groups. Differences were considered statistically significant at p value

of less than 0.05.

Results

Participants

The mean age of the 80 healthy subjects was 25.96 ± 2.98 y (range, 21–36 y), and 30 were

female individuals. Subject demographics and tear film parameters are presented in Table 1.

Subjective ocular symptoms and asthenopia

The total OSDI score at baseline was 15.08 ± 8.83 in the smartphone group and 12.44 ± 7.55 in

the control groups. The total OSDI score increased to 17.63 ± 7.74 at 1 h (P< 0.01 vs. baseline)
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and 25.03 ± 10.61 at 4 h (P< 0.01 vs. baseline and 1 h) in the smartphone group, and

14.47 ± 7.29 at 1 h (P = 0.68 vs. baseline) and 16.61 ± 6.45 at 4 h (P< 0.01 vs. baseline and

P = 0.52 vs. 1 h) in the control group. In the smartphone group, the OSDI symptom, visual

function and trigger scores increased to 7.80 ± 3.22 (P< 0.01 vs. baseline), 5.50 ± 3.49

(P = 0.10 vs. baseline) and 4.33 ± 4.21 (P = 0.32 vs. baseline) at 1 h, and 10.20 ± 5.25 (P< 0.01

vs. baseline and 1 h), 8.50 ± 5.47 (P< 0.01 vs. baseline and 1 h), and 6.33 ± 5.47 (P< 0.01 vs.

baseline and 1 h) at 4 h, respectively. At 4 h, the OSDI total, symptom, visual function, and

trigger scores were higher in the smartphone group than in the control group (Fig 2).

VAS in the smartphone and control groups was 0.54 ± 0.68 and 0.46 ± 0.75 at baseline,

1.30 ± 0.74 (P< 0.01 vs. baseline) and 1.30 ± 0.88 (P< 0.01 vs. baseline) at 1 h, and 2.26 ± 0.75

(P< 0.01 vs. baseline and 1 h) and 2.33 ± 0.90 (P< 0.01 vs. baseline and 1 h) at 4 h. There was

no significant difference in VAS between the two groups (Fig 3A).

CVS scores at baseline for fatigue, burning, dryness, blurred vision, and dullness in the

smartphone and control groups were 0.68 ± 0.71 and 0.50 ± 0.51; 0.14 ± 0.40 and 0.10 ± 0.31;

0.78 ± 0.99 and 0.73 ± 0.45; 0.26 ± 0.69 and 0.23 ± 0.43; and 0.36 ± 0.77 and 0.33 ± 0.48, respec-

tively. In the smartphone group, the fatigue, burning, and dryness scores at 1 h were

1.50 ± 0.92 (P< 0.01 vs. baseline), 0.48 ± 0.73 (P< 0.01 vs. baseline) and 1.56 ± 1.20 (P<0.01

vs. baseline), and the respective scores at 4 h were 2.34 ± 1.29 (P< 0.01 vs. baseline and 1 h),

0.94 ±1.13 (P< 0.01 vs. baseline and 1 h) and 2.20 ± 1.53 (P< 0.01 vs. baseline and 1 h). The

fatigue, burning, and dryness scores were higher in the smartphone groups than in the control

group at 4 h (all P< 0.05). However, blurred vision and dullness scores showed no significant

changes related to smartphone or computer display use, with no significant difference between

the two groups (Fig 3B–3F).

Status of the tear film

At baseline, FBUT and NIKBUT were 6.76 ± 2.03 and 10.26 ± 6.13 s in the smartphone

group, and 6.35 ± 2.30 and 11.84 ± 6.97 s in the control group. In the smartphone group,

FBUT and NIKBUT decreased to 6.42 ± 1.74 (P = 0.11 vs. baseline) and 9.85 ± 5.05 s

(P = 0.11 vs. baseline) at 1 h, and 6.06 ± 1.92 (P < 0.01 vs. baseline, P = 0.08 vs. 1 h) and

8.72 ± 4.79 s (P < 0.01 vs. baseline, P = 0.02 vs. 1 h) at 4 h. However, no significant change

was noted in the Schirmer test value, keratoepitheliopathy scores, or TMH after smart-

phone or computer display use. There were no significant differences in tear film parame-

ters between the two groups (Fig 4).

Table 1. Baseline characteristics of participants.

Characteristics Smartphone group (N = 50) Control group (N = 30)

Age (y) 25.52 ± 2.92 26.70 ± 2.98

Sex (male/female) 33/17 17/13

TBUT (s) 6.76 ± 2.03 6.35 ± 2.30

NIKBUT (s) 10.26 ± 6.13 11.84 ± 6.97

Schirmer test (mm) 13.66 ± 4.10 13.85 ± 3.15

KEP (0–9) 0.26 ± 0.54 0.35 ± 0.59

TMH (mm) 0.20 ± 0.05 0.21 ± 0.05

Data are expressed as the mean ± standard deviation.

TBUT, tear break up time; NIBUT, non-invasive keratograph break up time; KEP, keratoepitheliopathy; TMH, tear

meniscus height.

https://doi.org/10.1371/journal.pone.0206541.t001
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Oxidation markers in the tear film

The basal concentrations of HEL, 4-HNE, MDA, and 8-OHdG in the smartphone and the con-

trol groups were 268.49 ± 19.98 and 266.08 ± 26.96 nmol/L, 10.08 ± 3.07 and 9.76 ± 4.68 μg/

mL, 44.01 ± 6.03 and 41.90 ± 11.22 pmol/mg, and 14.69 ± 4.17 and 15.28 ±1.30 ng/ml, respec-

tively. The HEL concentration post smartphone use was 270.40 ± 17.04 nmol/L (P = 0.78 vs.

baseline) at 1 h and 282.53 ± 14.08 nmol/L (P< 0.01, vs. baseline and 1 h) at 4 h. There was no

significant difference in the HEL concentration between two groups. The concentrations of

4-HNE, MDA, and 8-OHdG showed no significant change after smartphone or computer dis-

play use. (Fig 5).

Cellular reactive oxygen species production at the ocular surface

To assess net oxidative stress, ROS levels in the conjunctiva epithelium were measured using a

DCF-DA assay kit. At baseline, there was no significant difference in DCF-DA fluorescein

intensity between the two groups (107.90 ± 27.54 and 108.73 ± 14.48 in the smartphone and

control groups). DCF-DA fluorescein intensity showed significant increased at 1 and 4 h in

both groups, with higher value in the smartphone group versus the control group at 4 h

(141.56 ± 22.39 vs. 123.03 ± 18.45 in the smartphone and control groups, P< 0.01) (Fig 6).

Table 2 shows the parameters of both groups during VDT use.

Fig 2. Changes in the ocular surface disease index (OSDI) scores. OSDI total (A), OSDI symptom (B), OSDI visual function (C), and OSDI

trigger (D). �P< 0.05 versus baseline. ��P< 0.05 versus 1 h. †P< 0.05 between the two groups.

https://doi.org/10.1371/journal.pone.0206541.g002
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Discussion

Recent studies have reported various adverse effects of smartphone use on ocular health.[3,5–

7] As the use of smartphone becomes more widespread and integrated in daily activity, ocular

health problems due to smartphone use becomes an increasingly serious issue. Our prospective

nonrandomized comparative clinical study investigated the influence of excessive smartphone

use on the tear film and ocular surface as compared with that of computer display use.

To evaluate subjective symptom changes, we analyzed the OSDI, VAS, and CVS scores. In

the present study, OSDI scores indicating dry eye symptom severity significantly increased,

whereas FBUT and NIKBUT decreased after smartphone use. In addition, the smartphone

group showed higher total OSDI, symptom, visual function, and trigger scores at 4 h than the

computer display group. Dry eye-like symptoms, such as irritation, burning, and dryness, are

common in people working at VDT screens.[23] Uchino and colleagues observed that VDT

workers had short tear break up time and increased corneal fluorescent staining, despite nor-

mal lacrimal function.[1] Excessive evaporation of the tear fluid due to prolonged blinking

intervals while gazing is considered as a causative factor in VDT-associated dry eye.[24, 25]

The high cognitive demands associated with reading tasks, such as using a VDT or reading

text messages, led to reduction in the spontaneous eye-blink rate.[26] Furthermore, the incom-

plete blink frequency and the exposure of the ocular surface area increase under VDT use.[23]

As a result of smartphone use, harmful factors including the decreased blink rate, frequent

incomplete eye closure and increased ocular surface exposure may disturb the delicate homeo-

static balance of the ocular surface system, inducing subjective symptoms and tear instability.

Fig 3. Changes in visual analogue scale (A) and computer vision syndrome scores including fatigue (B), burning (C), dryness (D), blurred

vision (E), and dullness (F). �P< 0.05 versus baseline. ��P< 0.05 versus 1 h. †P< 0.05 between the two groups.

https://doi.org/10.1371/journal.pone.0206541.g003
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[27] It is likely that the decline of FBUT and NIKBUT is associated with these adverse factors

from smartphone use.

Symptoms such as eye fatigue, aching in and around the eyes, blurred vision and headache

are collectively referred to as asthenopia.[28] Asthenopia is the ocular component of CVS.[29]

Almost 60 million people around the world suffer from CVS, and one million new cases are

estimated to occur annually.[30] CVS includes ocular, visual and musculoskeletal symptoms

that result from excessive VDT use.[29] The severity of the symptom is dose-dependent,

increasing significantly with prolonged durations of computer use.[31] Subjects who spent

more than 4 h using a computer display experienced more adverse CVS symptoms.[31] Our

results indicated that VAS and CVS scores were significantly increased in individuals after

smartphone use. Additionally, the smartphone group had higher fatigue, burning, and dryness

scores at 4 h compared with the computer display group. Similar to the OSDI score, elevated

VAS and CVS scores were associated with the decreased blink rate and frequent incomplete

eye closure during smartphone use. Among subjective symptoms, the blurred vision and dull-

ness did not change significantly after 4 h of smartphone use.

CVS is expected to be more severe after smartphone versus VDT uses. The smartphone

screen is smaller, especially at horizontal scale, and viewed at a closer distance than other

VDTs. Smartphones also have ergonomically lower positions than other VDTs. In general, the

screen size of a smartphone is approximately 5 in, which is much smaller than that of other

VDTs. Although blink intervals vary among individuals, the blink rate is approximately 20

blinks per minute in healthy individuals. VDT operation and other reading conditions caused

significantly decrease in the blink rate; with less reduction in participants who read text on an

Fig 4. Changes in tear break up time (TBUT, A), non-invasive kertograph break up time (NIKBUT, B), Schirmer test (C), keratoepithelioapthy

(KEP, D) and tear meniscus height (TMH, E). �P< 0.05 versus baseline. ��P< 0.05 versus 1 h.

https://doi.org/10.1371/journal.pone.0206541.g004
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expanded display.[26,32] To maintain stable and continuous vision, saccades are accompanied

by visual suppression.[26] Thus, for small amplitude saccades, such as those involved in view-

ing a small screen, visual suppression is effective in stabilizing vision.[26] However, visual sup-

pression in larger amplitude saccades is less effective and often requirescombined eye blink to

maintain visual stability.[26] Thus, the eye blink rate under smartphone use is likely to be less

than that under other VDTs‘use due to visual suppression correlated with amplitude saccades.

The preferred distance for viewing a mobile device (36.2 cm) is shorter than the typical dis-

tance for reading books (40 cm), with requirement fo greater accommodation and conver-

gence.[33] Focusing on a smart mobile device screen may involve continuous accommodation

efforts without blinking for an extended period.[34] Excessive smartphone use at a close read-

ing distance and the resultant abnormalities in accommodation and vergence in adolescents

can manifest as esotropia.[6] These differences in accommodation and convergence by dis-

tance may aggravate CVS in smartphone users.

Liquid-crystal display (LCD) and LED screens are useful and efficient in small portable

electrical devices such as smartphones. Although health issues associated with VDT radiation

are not guaranteed, electromagnetic radiation affects living tissue by destroying chemical

bonds and charging neutral molecules.[35] LCD and LED screens also emit a large amount of

blue light.[10] Many studies have reported harmful effects of blue light on the retina.[10] Blue

light causes excessive ROS production and damages photoreceptor and retinal pigment

Fig 5. Concentrations of hexanoyl lysine (HEL, A), 4-hydroxy-2-nonenal (4-HNE, B), malondialdehyde (MDA, C) and 8-oxo-2’-

deoxyguanosine (8-OHdG, D) in the tear film. � P< 0.05 versus baseline. �� P< 0.05 versus 1 h.

https://doi.org/10.1371/journal.pone.0206541.g005
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epithelial cells.[10] In a previous study, we showed that overexposure to blue light decreased

cellular viability and increased ROS production in human corneal epithelial cells.[9] Over

exposure to blue light led to oxidative damage, apoptosis, and inflammation of the ocular sur-

face resulting in dry eye, based on the findings of decreased FBUT and increased corneal fluo-

rescein staining scores, terminal deoxynucleotidyl transferase nick end labeling-positive cells,

inflammatory cytokines, and T-cells at the ocular surface.[9,10]

Among various oxidative stress markers, HEL is a good marker for oxidative modification

as an early marker of lipid peroxidation.[36] In this study, our results indicated that the HEL

concentration in tears was significantly increased at 4 h after smartphone use compared with

that at baseline and 1 h after use, whereas it was not changed after computer display use; how-

ever, 4-HNE, MDA, and 8-OHdG concentrations showed no significantly change after use.

Increased HEL levels may indicate smartphone use induced lipid peroxidation, a secondary

reaction to ROS formation. 4-HNE and MDA are considered to be largely responsible for the

cytopathological effects observed at the late phase of oxidative stress.[36,37] 8-OHdG is an oxi-

dized derivative of deoxyguanosine and is a major DNA oxidation product.[38] With longer

and more repetitive smartphone use, increased levels of other lipid peroxidation markers may

also be observed. However, increasing the experimental time is challenging due to the proba-

bility of harmful effects. Several antioxidant protective mechanisms in the healthy ocular sur-

face decrease function to ROS damage;[10] the observed differences in concentrations

between the oxidation stress markers may reflect these mechanisms. In this study, DCF-DA

assay was used to evaluate overall ROS production and cellular apoptosis.[10] Our results dem-

onstrated an increased level of ROS production at the ocular surface after smartphone and

computer display use, with higher value in the smartphone group at 4 h. These findings are

Fig 6. Reactive oxygen species production in the conjunctival epithelium afater smartphone use measured through 2’,7’-

dichlorodihydrofluorescein diacetate. �P< 0.05 versus the baseline value. †P< 0.05 between the two groups.

https://doi.org/10.1371/journal.pone.0206541.g006
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Table 2. Changes in the ocular surface disease index scores, visual analogue scale, computer vision syndrome scores, status of the tear film, oxidative stress markers,

and dichlorodihydrofluorescein fluorescein intensity production after use of the smartphone and computer display (control).

Parameters Smartphone group (N = 50) Control group (N = 30)

Baseline 1 h 4 h Baseline 1 h 4 h

OSDI (score)

Total 15.08

± 8.83

17.63

± 7.74�
25.03

± 10.61� �� †
12.44

± 7.55

14.47

± 7.29

16.61

± 6.45�

Symptom 6.20

± 3.58

7.80

± 3.22�
10.20

± 5.25� �� †
5.50

± 3.31

6.83

± 2.45�
7.17

± 2.84�

Visual function 4.88

± 3.41

5.50

± 3.49

8.50

± 5.47� �� †
4.17

± 3.42

4.58

± 2.81

5.83

± 2.81� ��

Trigger 4.00

± 4.21

4.33

± 4.21

6.33

± 5.47� �� †
2.78

± 4.00

3.06

± 4.08

3.61

± 4.74

VAS (score) 0.54

± 0.68

1.30

± 0.74�
2.26

± 0.75� ��
0.46

± 0.75

1.30

± 0.88�
2.23

± 0.90� ��

CVS (score)

Fatigue 0.68

± 0.71

1.50

± 0.92�
2.34

± 1.29� �� †
0.50

± 0.51

1.17

± 1.18�
1.40

± 1.00� ��

Burning 0.14

± 0.40

0.48

± 0.73�
0.94

± 1.13� �� †
0.10

± 0.31

0.23

± 0.43�
0.33

± 0.48�

Dryness 0.78

± 0.99

1.56

± 1.20� †
2.20

± 1.53� �� †
0.73

± 0.45

0.70

± 0.65

1.30

± 0.91� ��

Blurred vision 0.26 ± 0.69 0.40 ± 0.53 0.38 ± 0.53 0.23 ± 0.43 0.30 ± 0.47 0.33 ± 0.48

Dullness 0.36 ±0.77 0.44 ± 0.61 0.52 ± 0.71 0.33 ± 0.48 0.43 ± 0.50 0.43 ± 0.50

Tear film status

TBUT (s) 6.76

± 2.05

6.42

± 1.74

6.06

± 1.92�
6.35

± 2.30

6.94

± 1.67

6.05

± 1.73

NIKBUT (s) 10.26

± 6.13

9.85

± 5.05

8.72

± 4.79� ��
11.84

± 6.97

9.98

± 5.54

9.99

± 5.46

Shirmer test

(mm)

13.64 ± 2.85 13.58 ± 3.80 13.26 ± 3.21 13.85 ± 3.15 13.15 ± 3.36 12.50 ± 2.59

KEP (0–9) 0.26 ±0.56 0.28 ± 0.54 0.3 ± 0.58 0.35 ± 0.59 0.40 ±0.60 0.45 ± 0.60

TMH (mm) 0.20 ± 0.05 0.22 ± 0.56 0.22 ± 0.08 0.21 ±0.05 0.24 ± 0.50 0.24 ± 0.12

Oxidative stress markers

HEL

(nmol/L)

268.49

± 19.98

270.40

± 17.04

282.53

± 14.08� ��
266.08

± 26.96

267.83

± 39.97

277.02

± 54.04

4-HNE (μg/mL) 10.08

± 3.07

10.22

± 3.03

10.54

± 3.32

9.76

± 4.68

9.64

± 3.36

9.68

± 2.30

MDA (pmol/mg) 44.01

± 6.03

43.38

± 4.71

45.14

± 9.34

41.90

± 11.22

45.48

± 14.62

44.73

± 9.45

8-OHdG (ng/ml) 14.69

± 4.16

14.51

± 4.64

15.61

± 5.35

15.28

± 1.30

14.45

± 1.99

14.95

± 1.65

DCF fluorescein intensity 107.90 ± 27.54 121.42 ± 28.31� 141.56 ± 22.39� �� † 108.73 ± 14.48 118.37 ± 10.49� 123.03 ± 18.45�

Data are expressed as mean ± standard deviation.

OSDI, ocular surface disease index; VAS, visual analogue scale; CVS, computer vision syndrome; TBUT, tear break-up time; NIKBUT, non-invasive keratograph break-

up time; KEP, keratoepitheliopathy; TMH, tear meniscus height; HEL, hexanoyl lysine; 4-HNE, 4-hydroxy-2-nonenal; MDA, malondialdehyde; 8-OHdG, 8-oxo-2’-

deoxyguanosine; DCF, dichlorodihydro-fluorescein.

�P < 0.05 versus baseline.

��P < 0.05 versus 1 h.

†P < 0.05 between the two groups

https://doi.org/10.1371/journal.pone.0206541.t002
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consistent with previous reports on the relationship between visible light irradiation, cellular

ROS levels and corneal epithelial cell viability in vitro.[9,39] Oxidative damage and apoptosis

to the cornea, which may result from overexposure to blue light, may have association with

inflammation of ocular surface and resultant dry eye.[10]

In summary, smartphone use aggravated subjective ocular symptoms and asthenopia; addi-

tional effects included compromised tear film stability and increased ROS production at the

tear film and ocular surface. Smartphone-related changes at the ocular surface are multifacto-

rial, and our study did not investigate all confounding factors. Smartphone use can deteriorate

the tear film via the reduced rate of eye blink, incomplete closure of the eye, and exposure of

the ocular surface. It can also induce the oxidative stress response at the ocular surface, thus

aggravating ocular symptoms. In clinical practice, increased awareness of the tear film and

ocular surface changes under smartphone use may enable clear understanding of the causes of

ocular discomfort and management of ocular problems associated with excessive smartphone

use.
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