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Background: Alteration of the gut microbial population (dysbiosis) may increase the risk for allergies and other
conditions. This study sought to clarify the relationship of dysbiosis with allergies in adults.
Methods: Publicly available AmericanGut Project questionnaire and fecal 16S rRNA sequence datawere analyzed.
Fecalmicrobiota richness (number of observed species) and composition (UniFrac) were used to compare adults
with versus without allergy to foods (peanuts, tree nuts, shellfish, other) and non-foods (drug, bee sting, dander,
asthma, seasonal, eczema). Logistic and Poisson regression models adjusted for potential confounders. Odds ra-
tios and 95% confidence intervals (CI) were calculated for lowest vs highest richness tertile. Taxonomy associa-
tions considered 122 non-redundant taxa (of 2379 total taxa) with ≥0.1% mean abundance.
Results: Self-reported allergy prevalence among the 1879 participants (mean age, 45.5 years; 46.9% male) was
81.5%, ranging from 2.5% for peanuts to 40.5% for seasonal. Fecal microbiota richness was markedly lower with
total allergies (P = 10−9) and five particular allergies (P ≤ 10−4). Richness odds ratios were 1.7 (CI 1.3–2.2)
with seasonal, 1.8 (CI 1.3–2.5) with drug, and 7.8 (CI 2.3–26.5) with peanut allergy. These allergic participants
also had markedly altered microbial community composition (unweighted UniFrac, P = 10−4 to 10−7). Total
food and non-food allergies were significantly associated with 7 and 9 altered taxa, respectively. The dysbiosis
was most marked with nut and seasonal allergies, driven by higher Bacteroidales and reduced Clostridiales taxa.
Interpretation: American adults with allergies, especially to nuts and seasonal pollen, have low diversity, reduced
Clostridiales, and increased Bacteroidales in their gut microbiota. This dysbiosis might be targeted to improve
treatment or prevention of allergy.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Allergies, specifically type I hypersensitivity disorders, are clinically
important and increasingly prevalent. In the US population from 1988–
1994 to 2005–2006, self-reported prevalence of physician-diagnosed sea-
sonal pollen allergy (hay fever), for example, increased from8.8% to 11.3%
(Salo et al., 2011; Sheikh et al., 2003). Asthma prevalence in the US pop-
ulation in 2005–2006was estimated to be 14.1% (Liu et al., 2010).Modern
hygiene has been postulated to contribute to the increasing prevalence of
allergies, based on both functional and observational studies. Children
who have fewer early life exposures, such as in small families, are more
likely to develop seasonal pollen allergy or eczema (Strachan, 2000).
alse discovery rate; MiRKAT,
NHANES, National Health And
principal coordinate analysis;
relative abundance; 16S rRNA,
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Children in households with at least 2 dogs or cats are 70% less likely to
develop serologic or skin prick test reactivity to common respiratory an-
tigens (Ownby et al., 2002). In Europe and othermodern societies, risk for
allergy and asthma are lower for children on farms (Ege et al., 2011). And
asthma prevalence increases with migration from a less to a more highly
industrialized country (Gibson et al., 2003; Tobias et al., 2001).

Functionally, allergy results from inappropriate T-helper type 2 (Th2)
immune response to generally innocuous protein. As reviewed in Arrieta
et al. (2014), and elaborated inmurinemodels (BowmanandHolt, 2001;
Hrncir et al., 2008; Olszak et al., 2012), maturation of the Th2 responses
that predominate at birth to Th1predominance in infancy andadulthood
is conditional on the presence of commensal gut bacteria. More recently,
Ohnmacht et al. demonstrated in mice that the microbial population of
the gut (the microbiota) controls systemic Th2 responses by inducing
enteric Th17 and regulatory T cells (Ohnmacht et al., 2015).

Fujimura and Lynch comprehensively reviewed the relationship
between the microbiota and risk for allergy and asthma, particularly
in infancy and inmurinemodels (Fujimura and Lynch, 2015). In the na-
sopharynx, predominance byMoraxella, Streptococcus, andHaemophilus
during the first fewmonths of life predicted development of childhood
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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asthma (Teo et al., 2015). Among adolescents in Finland, sensitiza-
tion to respiratory allergens was associated with low diversity of
Gammaproteobacteria on the skin (Hanski et al., 2012). Gut microbial
differences may also contribute to allergy risk in humans (Penders
et al., 2014). In two studies, infants who had a higher fecal abundance
of Clostridium difficile and Escherichia coli, respectively, had an increased
risk of developing an allergy in the future (Kalliomaki et al., 2001;
Penders et al., 2006). In a very small Swedish study, low fecal microbial
diversity at age 1 month predicted atopic eczema by age 2 years
(Abrahamsson et al., 2012), as well as asthma, but not rhino-
conjunctivitis, eczema, or atopy, by age 7 years (Abrahamsson et al.,
2014). In Denmark, fewer fecal bacterial taxa by molecular fingerprint-
ing predicted allergic rhinitis but not asthma or atopic dermatitis by age
6 (Bisgaard et al., 2011).Comprehensive analysis based on next-
generation sequencing has not yet clarified whether alteration of the
gutmicrobiota (dysbiosis) is associated with allergy in infants or adults.
To address this, in adults, we analyzed publicly available data from the
American Gut Project, similar to a previous analysis of the microbiota
with history of cesarean birth and appendectomy (Goedert et al., 2014).

2. Methods

2.1. Microbiome and Phenotypic Data

The 16S rRNA V4 regionwas sequenced by the American Gut Project
(AGP). The operational taxonomic unit (OTU) table rarefied to 10,000
sequence reads per sample, as well as metadata, was downloaded
from the AGP website (https://github.com/biocore/AmericanGut/tree/
master/data/AG). Samples with less than 10,000 sequence reads were
excluded from analysis. A current summary is available at http://
microbio.me/AmericanGut/static/img/mod1_main.pdf, and details of
the OTU picking and taxonomy assignment are available at http://
nbviewer.ipython.org/github/biocore/American-Gut/blob/master/
ipynb/module2_v1.0.ipynb. Richness (number of observed species),
alpha diversity metrics [Shannon index, Chao1, phylogenetic diversity
(PD)_whole_tree], beta diversity metrics (weighted and unweighted
UniFrac distance matrices), and relative abundance of each taxon were
calculated in the Quantitative Insights Into Microbial Ecology (QIIME)
pipeline (Caporaso et al., 2010).

After exclusions [duplicates, diabetes, inflammatory bowel disease,
age b4 years (after which the microbiota resembles that of adults
(Yatsunenko et al., 2012)), missing race, specimen not feces, antibiotic
used in the past month], data were analyzed for 1879 AGP participants.
Each participant who provided a positive response on the AGP self-
administered questionnaire was classified as having an allergy or pet.
For foods, the verbatim question, which did not require validation by a
physician, was: “I am allergic to ___ (mark all that apply): Peanuts,
Tree nuts, Shellfish, Other, I have no food allergies that I know of.” For
non-foods, there were three verbatim questions: “Do you have any of
the following non-food allergies?Mark all that apply: Drug (e.g. Penicil-
lin), Pet dander, Beestings, Poison ivy/oak”; “Do you have seasonal aller-
gies? Yes/No”; and Have you been diagnosed with any of the following
conditions (check all which apply)? … (e) Asthma, Cystic Fibrosis or
Lung Disease.… (v) Skin Condition….” Thus, the allergies included
four foods (peanuts, tree nuts, shellfish, other food) and six non-foods
[drug, bee sting, dander, asthma, seasonal, and eczema (specified in
skin conditions)]. For pets, the questions were: “Do you have a dog?”
and “Do you have a cat?” Participants with an affirmative response
were compared to participants without an affirmative response. In sen-
sitivity analyses (specifically, dander allergy with dog or cat ownership
in Supplemental Online Content), excluding participantswith uncertain
or no response reduced sample size and statistical power but had no
substantive effect on the associations. We previously noted that AGP
participants are widely scattered across the US and resemble the
American adult population with respect to the prevalence of cesarean
birth and appendectomy, but they are overwhelmingly non-Hispanic
Caucasian (93%) and non-smokers (96%) (Goedert et al., 2014). In like
manner for the current analysis, we compared the prevalence of
allergies reported in AGP data to the prevalence of clinical allergens
that were self-reported in representative samples of the US population,
particularly the National Health and Nutrition Examination Survey
2005–2006 (Hoppin et al., 2011; Liu et al., 2010; Salo et al., 2011;
Visness et al., 2009).

2.2. Richness, Alpha Diversity and Individual Taxa Tests

We examined allergy associations with the number of observed spe-
cies (richness) and with conventional alpha diversitymetrics (Shannon
index, Chao1 and PD_whole_tree). Unconditional logistic regression
was used to examine associations between microbiomemetrics and bi-
nary allergy traits, quantified as the odds ratio (OR) and 95% confidence
interval (CI). Negative binomial regression was used to examine associ-
ations with total numbers of allergy traits. All regression models were
adjusted for age, sex, body mass index (BMI), season (spring, summer,
fall and winter), time since last antibiotic use (2–6 months, 6–12
months, N12months), probiotic and vitamin use.We also testedwheth-
er the associations betweenmicrobiome features and non-food allergies
were confounded by food allergies by adjusting for the food allergies in
the regression model.

After excluding taxa with relative abundances b0.1%, 223 taxa from
the phylum level to the species level were left. Many taxa were very
highly correlated, which may uncover trivial duplicate associations.
We calculated pairwise Pearson correlations for relative abundances of
the 223 taxa and performed pruning using Pearson correlation coeffi-
cient 0.95 as a cutoff. For a pair of highly correlated taxa at different
levels, we selected the lower level taxon for association analysis. For
each pair of highly correlated taxa at the same level, we randomly
included one taxon for analysis. After correlation pruning, we had 122
taxa (subsequently termed “non-redundant”).

2.3. Composition (Beta Diversity) Test

Weighted and unweighted UniFrac distance matrices were derived
from the QIIME pipeline. For each allergy trait, we used theMicrobiome
Regression-based Kernel Association Test (MiRKAT) (Zhao et al., 2015),
a kernel-based regression method, for testing whether microbiome
composition differed between cases and controls using either the
weighted or unweighted UniFrac distance matrix. The associations
were adjusted for sex, age, BMI, season, time since last antibiotic use,
probiotic and vitamin use. For each significant association, we used
MiRKAT to run 100,000 permutations to verify the asymptotic P-value
approximations. We identified significant associations by controlling
false discovery rate (FDR) b 10%. We also performed principal coordi-
nate analysis (PCoA) to derive the top three PCoA scores and examined
their associations with allergy traits.

2.4. Specific Taxa Associated With Multiple Allergy Traits

We performed standard pairwise association analysis followed by
false discovery rate (FDR) correction to identify significant associations
between taxon/allergy pairs, which turned out to have limited statistical
power because of the heavy multiple testing burden. We observed that
some taxa were modestly associated with multiple allergy traits. Thus,
we developed a statistical testing framework, following Siegmund
et al. (2011), to identify individual taxa associatedwithmultiple allergy
traits. The test improved statistical power by aggregating weak associa-
tions across traits. The significance was evaluated by 100,000 random
permutations, which automatically accounted for the correlations
among allergy traits. Details are in the Supplemental Online Content.
We applied the testing procedure to 122 non-redundant taxa and pro-
duced 122 P-values. We identified taxa significantly associated with
multiple allergy traits by controlling FDR at 10%based on these P-values.

https://github.com/biocore/AmericanGut/tree/master/data/AG
https://github.com/biocore/AmericanGut/tree/master/data/AG
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3. Results

3.1. Characteristics of the Population

The 1879 participants had a mean age of 45.5 years (standard deviation
15.7 years), with a majority of women (53.1%). Most participants (81.5%)
self-reportedat least oneallergy. Eachallergy's prevalenceand its associations
with other questionnaire variables are presented in Table 1. Approximately
3% of participants reported allergy to peanuts, tree nuts, or shellfish; and
9.1% reported allergy to other foods. Among the six non-foods, allergy preva-
lence ranged from 4.7% for bee sting to 40.5% for seasonal. At least one food
and one non-food allergy was reported by 235 participants. Asthma, dander
and drug allergy prevalence in the AGP were lower than the prevalence of
these reported in the literature (Table 1), but otherwise prevalence was
similar for most of the other allergies. It must be noted that the prevalence
of an allergy is lower and its specificity is higher with diagnosis by a doctor,
compared to when an allergy is merely self-reported (Hoppin et al., 2011).
More allergies were reported by women than men, especially drug allergy
(P = 1.9 × 10−7). Higher BMI was associated with more food and total
allergies, and especially with seasonal allergy (P = 7.6 × 10−6). Probiotic
use was associated with more total allergies (P = 0.0008). Otherwise,
allergies had no or only modest associations with potential confounding
variables (Table 1). Dog and cat ownership was reported by 578 and 555
participants, respectively. Allergy prevalence was not associated with
ownership of a dog or cat (data not presented).

3.2. Characteristics of the Fecal Microbiota

Fecal microbiota profiles of the 1879 participants were mapped to
2379 distinct prokaryote taxa. These included 223 taxa with a mean
relative abundance of 0.1% or higher, ranging from 48.3% for the
phylum Firmicutes to 0.1% for Brevundimonas diminuta in the class
Alphaproteobacteria (Suppl. Table 1).

3.3. Richness and Alpha Diversity with Allergies

Richness (the number of observed species) in the fecal microbiota
was strongly and negatively associated with each allergy except
bee sting, asthma, and eczema (Fig. 1). Low richness also was strongly
associated with the number of non-food allergies (P = 2.7 × 10−6),
food allergies (P = 8.8 × 10−7) and all allergies (P = 9.1 × 10−9).
The strongest non-food associations were with drug allergy (P =
1.2 × 10−5) and seasonal allergy (P = 5.1 × 10−5), and the strongest
food associationwaswith peanut allergy (P=2.4 × 10−7). Associations
were similar with three estimates of alpha diversity (Fig. 1 and Suppl.
Fig. 1). Table 2 presents the magnitude of the associations for each
allergy across all estimates of alpha diversity. The odds ratios (OR) for
lowest vs highest tertile of richness were 1.8 (CI 1.3–2.5) for drug
allergy, 1.7 (CI 1.3–2.2) for seasonal allergy, and 7.8 (CI 2.3–26.5) for
peanut allergy.

3.4. Composition (Beta Diversity) With Allergies

Composition of the fecal microbial population was significantly
altered with all allergy traits except asthma (Fig. 2). The strongest
associationswith unweighted UniFrac distancewere foundwith peanut
(P= b1 × 10−7), shellfish (P= 5.1 × 10−5), tree nut (P= 2.5 × 10−4),
seasonal (P = 9.1 × 10−5), and drug (P = 4.7 × 10−6) allergies. In
contrast, weighted UniFrac distance only showed weak associations
with seasonal, tree nut, and peanut allergies, and no association with
other allergies. By unweighted UniFrac distance, composition was
increasingly altered with a larger number of allergies, both to foods
and non-foods (Fig. 2).

To further understand the associations between microbiota compo-
sition and allergies, we derived the top three PCoA scores based on
the unweighted UniFrac distance matrix and tested the associations



Fig. 1. Associations between richness (observed species), alpha diversity and allergies. Upper panel: Association P-values were derived by unconditional logistic regression (for each in-
dividual allergy) or by negative binomial regressions (for total allergies), adjusting for age, sex, body mass index (BMI), time since last antibiotics, season, probiotic and vitamin usage.
Lower panels: Box plots for the associations of richness (observed_species). Box plots for Shannon index, Chao1 and PD_whole_tree are reported in Fig. E1. In each box plot, “0” and
“1” represent the group without and with the specified allergy, respectively.
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between these PCoA scores and the allergy traits (Fig. 2 for PCoA1;
Suppl. Fig. 2 for PCoA2 and PCoA3). The three PCoA scores explained
17.5%, 4.4% and 3.2% of the model variance, respectively. The
Table 2
Odds ratio (OR) and 95% confidence interval (CI) for associations of ten allergies with fecal mi

OR (95% CI)
by tertilea

Drug Bee sting Dander Asthma Season

Shannon
index

M 1.72
(1.22–2.41)

0.37
(0.20–0.68)

1.18
(0.82–1.69)

1.03
(0.642–1.64)

1.27
(0.981

L 2.00
(1.43–2.79)

0.69
(0.41–1.17)

1.72
(1.22–2.43)

1.35
(0.85–2.13)

1.71
(1.32–

Richness M 1.57
(1.12–2.20)

0.48
(0.27–0.86)

1.44
(1.0–2.07)

1.68
(1.04–2.71)

1.43
(1.1–1

L 1.83
(1.31–2.54)

0.66
(0.38–1.13)

1.83
(1.29–2.61)

1.52
(0.94–2.47)

1.73
(1.33–

Chao1 M 1.33
(0.95–1.86)

0.40
(0.22–0.73)

1.08
(0.76–1.55)

1.58
(0.99–2.52)

1.15
(0.888

L 1.68
(1.22–2.33)

0.61
(0.36–1.04)

1.42
(1.01–2.00)

1.31
(0.82–2.11)

1.67
(1.29–

PD whole
tree

M 1.78
(1.27–2.50)

0.46
(0.26–0.82)

1.27
(0.884–1.83)

1.49
(0.92–2.42)

1.50
(1.16–

L 1.93
(1.38–2.71)

0.68
(0.40–1.17)

1.77
(1.25–2.52)

1.52
(0.95–2.44)

1.65
(1.27–

a Odds ratio [OR, and 95% confidence interval (CI)] estimates for middle (M) and lowest (L
(Shannon index, Chao1, and PD whole tree). All models were adjusted for age, sex, body m
use (2–6 months, 6–12months, N12 months), probiotic and vitamin use. Highly significant
CI 1.0–1.3) in underline.
associations with PCoA scores were consistent with but weaker than
those with the UniFrac distance matrix, suggesting that the top PCoA
scores contain useful but incomplete information.
crobiota richness and alpha diversity.

al Eczema Tree nuts Shellfish Peanuts Other food

–1.64)
1.01
(0.73–1.41)

2.00
(0.79–5.03)

2.00
(0.74–5.44)

4.15
(1.15–15)

1.52
(0.96–2.40)

2.21)
1.19
(0.86–1.65)

3.62
(1.54–8.52)

5.02
(2.02–12.40)

8.57
(2.54–28.9)

1.87
(1.2–2.92)

.85)
1.09
(0.78–1.52)

2.29
(0.93–5.64)

3.11
(1.11–8.71)

4.51
(1.28–15.9)

1.27
(0.82–1.99)

2.24)
1.22
(0.88–1.70)

3.19
(1.34–7.62)

5.41
(2.03–14.5)

7.78
(2.29–26.5)

1.45
(0.94–2.24)

–1.49)
1.20
(0.86–1.67)

1.30
(0.56–3.01)

3.08
(1.1–8.61)

2.80
(0.87–8.95)

1.51
(0.96–2.38)

2.16)
1.29
(0.93–1.80)

2.24
(1.04–4.83)

5.48
(2.06–14.6)

6.79
(2.3–20)

1.73
(1.11–2.70)

1.94)
1.00
(0.72–1.41)

1.70
(0.70–4.11)

2.33
(0.79–6.81)

2.35
(0.73–7.64)

1.45
(0.91–2.30)

2.15)
1.34
(0.97–1.86)

2.86
(1.25–6.54)

6.29
(2.38–16.6)

6.56
(2.23–19.3)

1.86
(1.19–2.90)

) tertile, versus highest tertile, for fecal microbiota richness and alpha diversity estimates
ass index (BMI), season (spring, summer, fall and winter), time since last antibiotics
associations (lower CI N1.3) in bold italic; moderately significant associations (lower



Fig. 2. Association between microbiome composition (beta diversity) and allergies. Upper panels: Association P-values were calculated by MiRKAT (Zhao et al., 2015) using unweighted
and weighted UniFrac distance matrices. Associations were adjusted for age, sex, BMI, time since last antibiotics, season, probiotic and vitamin usage. Lower panels: Box plots of the top
PCoA scores based on unweighted UniFrac distance matrix. P-values were based on logistic regression for each individual allergy and by negative binomial regressions for total allergies.
Box plots for PCoA2 and PCoA3 are reported in Fig. E2. The top three PCoA scores explained 17.5%, 4.4% and 3.2% of the variance.
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3.5. Correlations and Sensitivity Analyses

There was a moderate correlation between total food and non-food
allergies (R = 0.325), stronger correlation between peanut and tree
nut allergies (R = 0.44), and weaker correlations for the other food
allergy pairs (rangeR=0.18–0.27). Except for amoderate correlation of
dander with seasonal allergies (R= 0.34) and with asthma (R= 0.26),
all other correlation pairs were weak (R ≤ 0.20) or essentially null
(R b 0.10, Suppl. Table 2).

Suppl. Table 3 presents sensitivity analyses for possible confounding
or mediation by cesarean birth, ownership of a dog or cat, and food al-
lergies. Each of these variables was added to the richness, alpha diversi-
ty, and beta diversity models. Based on attenuation of P-values, little or
no evidence of confounding or mediation was found, with one excep-
tion. P-value increased about 2 logs when food allergies were added to
the total non-food allergy models for alpha diversity and richness
(e.g., P = 2.67 × 10−6 increased to P = 5.21 × 10−4). Likewise, when
food allergies were added to the total non-food allergy model for un-
weighted UniFrac distance, P b 10−8 increased to P = 2.1 × 10−5.

3.6. Specific Taxa with Multiple Allergies

Standard analysis for associations between the 1220 pairs of 10 al-
lergies and 122 non-redundant taxa identified only four pairs that
were significant at FDR b 10% (nominal P b 0.00035, Suppl. Table 4).
To test the associations of specific taxa with multiple allergies at
FDR b 10%, we aggregated the allergies and used 100,000 permutations
(seeMethods). As shown in Fig. 3 and Suppl. Table 5, both drug and bee
sting allergies were associated, albeit in opposite directions, with
g__Paraprevotella and two Alphaproteobacteria taxa. Peanut and
tree nut allergies were positively associated with g__Bacteroides
and with two closely related taxa (g__Bacteroides;s__fragilis and
o__Bacteroidales), and negatively associated with o__Clostridiales,
g__Prevotella;s__, and f__Ruminococcaceae (Fig. 3). Seasonal allergy
was associated with ten taxa, resembling the nut allergy taxa. Subsets
of the seasonal taxa were also associated, although more weakly, with
asthma, eczema and dander allergy. With negative binomial regression
models to adjust for all covariates, 8 taxawere associatedwith total food
allergies, and 8 taxa were associated with total non-food allergies
(Fig. 3), corroborating the multiple trait results.

4. Discussion

In this AmericanGut Project population, 4% ofwhomwere ages 4–17
and two-thirds of whom were between ages 30–62, the prevalence of
one or more self-reported allergies was 81.5%. About 3% reported pea-
nut or tree nut allergy, and nearly 41% reported seasonal allergy.
Women reported more drug allergy, and obese participants reported



Fig. 3. Taxa associated with multiple allergy traits. We identified 13 taxa [false discovery rate (FDR) b 10%] associated with multiple food or non-food allergies. Each taxon's shorthand
name, average relative abundance (RA), and a P-value for testing multiple allergy traits based on 100,000 permutations are presented. The heatmap shows statistically significant, covar-
iate-adjusted P-values (red for positive, blue for negative) for associations with total allergies (by negative binomial models) and with each allergy (by logistic regression). The Z-scores
and P-values for individual taxon associations are in Table E5.
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more seasonal allergy. Pet ownership was irrelevant for our adults,
which is consistent with previous null or ambiguous associations that
may reflect exposure to dogs or particularly to cats outside the home
or in early childhood (Dharmage et al., 2012; Simpson and Custovic,
2005). Correlations between the allergies were null or weak, except
between dander and seasonal (R = 0.34) and between peanut and
tree nut (R = 0.44). Independent of these within-subject correlations,
we found statistically significant fecal dysbiosis across multiple aller-
gies. Specifically, reduced richness and altered composition was found
with all allergies except asthma, bee sting, and eczema. The dysbiosis
was most marked with allergies to nuts and seasonal pollen, and it
was driven by higher abundance of Bacteroidales and reduced abun-
dance of Clostridiales.

The source of allergy-associated dysbiosis is unknown. One possibil-
ity is cesarean birth (Penders et al., 2014). In a longitudinal, fecal
microbiome study of Swedish infants, cesarean delivery was associated
with significantly delayed Bacteroides colonization and lower blood
levels of Th1 cytokines (CXCL10 and CXCL11) but no difference in Th2
cytokines (Jakobsson et al., 2014). Cesarean delivered infants also had
low diversity of Bacteroidetes taxa. By age 24 months, Bacteroides and
Clostridia taxa predominated irrespective of delivery route (Jakobsson
et al., 2014). The Swedish study is consistent with reports that
cesarean-delivered children have a higher risk for developing asthma
(1.2-fold), atopic sensitization (1.7-fold), and allergic rhinitis (2-fold)
(Kolokotroni et al., 2012; Pistiner et al., 2008; Thavagnanam et al.,
2008). In a Danish study based on 16S rRNA fingerprinting, lower fecal
bacterial diversity at age 1 month was not associated with cesarean de-
livery, but it was associated with increased likelihood of allergic rhinitis
(1.3-fold) by age 6 years (Bisgaard et al., 2011). Consistent with the
Danish study, allergy was not associated with cesarean birth in the cur-
rent study. Moreover, although we found that both cesarean birth and
allergies were associated with low richness, they were associated with
different taxa (Goedert et al., 2014). These findings suggest that the
dysbiosis of allergy in adults develops postnatally.

In our study, the gut microbiota was not associated asthma or
eczema, and only narrowly associated with bee sting allergy. The AGP
questionnaire asked “Have you been diagnosed with… Asthma, Cystic
Fibrosis or Lung Disease”, implying validation by a health care profes-
sional. However, grouping with cystic fibrosis and lung disease would
clearly reduce specificity for asthma.Moreover, these respiratory condi-
tions were not explicitly linked to allergy. Non-specificity would be ex-
pected to inflate asthma prevalence, which was not seen, as prevalence
was lower in the AGP (8.4%) than reported for the US population
(14.1%) (Liu et al., 2010). Specificity may also have been poor for ecze-
ma, as this was one of several “skin conditions” in the AGP question-
naire. In addition, even true atopic eczema, with 3% estimated
prevalence in developed countries (Eyerich and Novak, 2013), is not a
simple Th2-mediated disease but also involves genetic and non-
genetic dermal barriers (Eyerich and Novak, 2013). Systemic reaction
to bee or wasp sting, which also has a prevalence of approximately 3%
(Golden, 2013), was unrelated to atopy in three previous studies
(Birnbaum et al., 1994; Fernandez et al., 1999; Golden et al., 1989).
We found that bee sting allergywas significantly associatedwith higher
abundance of Alphaproteobacteria and g__Paraprevotella but not with
global microbiota metrics.

The implications of the hygiene hypothesis extend beyond allergy
per se, as exemplified by the reduced risk of non-Hodgkin lymphoma
for adults who were the first-born or only child in their family, and for
those who developed allergy to pollen and perhaps to foods (Cozen
et al., 2007; Grulich et al., 2005; Smedby et al., 2007). There are similar
birth-order associations with young-adult Hodgkin lymphoma (Chang
et al., 2004; Gutensohn et al., 1975; Mack et al., 2015; Westergaard
et al., 1997); survivors of this malignancy had low diversity of the
fecal microbiota (Cozen et al., 2013), an association compatible with
the hygiene hypothesis but also with cancer and its treatment. Human
microbiota studies of other conditions linked to the hygiene hypothesis
are lacking.

Our study had several important weaknesses. Some of the allergies
were probably misclassified, because the questionnaire data were self-
reported with no validation by a physician or an objective test. This
would bias toward the null, by introducing noise into a true association
between a condition and an exposure. Our cross-sectional design can-
not distinguish whether the observed dysbiosis preceded or followed
the development of allergies. The specimens represented only one
timepoint, but this alsowould bias toward the null, reducing the chance
to detect associations with time-varying fecal microbiome metrics. We
did not investigate possible associationswith seasonality, but rather ad-
justed for it. With this approach, wewould not have identified transient
changes as reported for pollen season in Japan (Odamaki et al., 2007).
Avoidance of particular foods could alter the microbiota, but intake of
these foods (peanuts, tree nuts, and shellfish) is probably too low to
affect the microbiota of the general population. Antihistamines or
other medications may have altered the allergic participants' microbio-
ta, although this has not been reported.We adjusted for reported use of
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probiotics and vitamins, based on the possibility that their usemay have
altered themicrobiota.We excluded participantswhoused an antibiotic
within one month, and adjusted analyses for earlier antibiotic use.

In conclusion, American adults with allergies, especially but not ex-
clusively to nuts and seasonal pollen, have lower richness and altered
composition of their gut microbiota. This observation of an allergy-
associated dysbiosis supports the hygiene hypothesis, but the origin of
the dysbiosis is unknown. Also unknown iswhether prevention or ame-
lioration of the dysbiosis can modify allergy prevalence or severity
(Costa et al., 2014; Singh et al., 2013). Clinical trials and other longitudi-
nal studies that incorporate fecal microbiota characterization will be
needed to address these questions.
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