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Abstract: To examine the effect of melatonin given to rats simultaneously with fructose on 

initial and fully developed metabolic syndrome, male Wistar rats had free access to chow 

and 5% or 10% fructose drinking solution for 8 weeks. As compared to controls, systolic 

blood pressure augmented significantly under both treatments whereas excessive body 

weight was seen in rats receiving the 10% fructose only. Rats drinking 5% fructose showed 

a greater tolerance to a glucose load while rats having access to a 10% fructose drinking 

solution exhibited the expected impaired glucose tolerance found in the metabolic 

syndrome. Circulating triglyceride and low density lipoproteins-cholesterol (LDL-c) 

concentration augmented significantly in rats showing a fully developed metabolic 

syndrome only, while high blood cholesterol levels were found at both stages examined. 

Melatonin (25 μg/mL drinking solution) counteracted the changes in body weight and 

systolic blood pressure found in rats administered with fructose. Melatonin decreased the 

abnormal hyperglycemia seen after a glucose load in 10% fructose-treated rats but it did 

not modify the greater tolerance to glucose observed in animals drinking 5% fructose. 

Melatonin also counteracted the changes in plasma LDL-c, triglyceride and cholesterol 
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levels and decreased plasma uric acid levels. The results underline a possible therapeutical 

role of melatonin in the metabolic syndrome, both at initial and established phases. 

Keywords: metabolic syndrome; melatonin; fructose; dyslipidemia; hypertension; obesity; 

glucose tolerance 

 

1. Introduction 

The metabolic syndrome is a cluster of metabolic abnormalities including, among others, abdominal 

obesity, insulin resistance, atherogenic dyslipidemia, increased blood pressure (BP) and a  

pro-inflammatory state [1–4]. Besides an increased risk for cardiovascular diseases and type 2 

diabetes, this syndrome is associated with numerous co-morbidities including obstructive sleep apnea 

syndrome, reproductive disorders, dementia, non-alcoholic fatty liver disease and some cancers.  

The metabolic syndrome is characterized by the presence of at least three of the following 

parameters: waist circumference >102 cm in males and >88 cm in females, triglycerides >150 mg/dL 

plasma, high density lipoproteins (HDL) <40 mg/dL plasma, BP > 130/85 mm Hg and fasting glucose 

>110 mg/dL [1–4]. The metabolic syndrome affects more that 25% of population in the developed and 

underdeveloped world with an associated threefold increased risk for cardiovascular mortality. It is 

therefore critical to identify mechanisms and strategies to prevent or treat it.  

A causal role of dietary components has been postulated in the metabolic syndrome and fructose 

intake may play a major role in its etiology [4]. An impending increase in fructose intake, primarily in 

the form of sucrose (that contains 50% fructose) and corn syrup (55% fructose content) is documented 

in the last 25 years. Moreover, fructose intake has been linked to the increased incidence of obesity and 

diabetes [4]. 

High fructose intake has been commonly modeled in rats [5], and lately in non-human primates [6]. 

In both types of models, fructose feeding induces hyperinsulinemia, insulin resistance and 

hypertriglyceridemia. Additionally, hypertension is produced by feeding rats with a high-fructose diet [7]. 

Among several substances with the capacity to curtail fructose-induced metabolic syndrome, 

melatonin has received attention because of its very low or absent toxicity that turns it potentially 

appropriate for human use. In high-fat/high sucrose-fed rats giving an intraperitoneal (i.p.) injection of 

4 mg/kg body weight melatonin every morning for 8 weeks, starting after 20 weeks of feeding, weight 

gain inhibition occurred together with improved insulin sensitivity [8]. Rats fed a diet containing 60% 

fructose exhibited an inhibition of melatonin secretion and turned hypertensive unless a daily 

supplementation of melatonin (30 mg/kg in drinking water) was given [9]. 

In a recent study, the melatonin activity on the metabolic syndrome induced by a diet containing 

60% fructose was examined [10]. This diet increased serum insulin, triglyceride, total cholesterol, free 

fatty acids, uric acid, leptin and lipid peroxide concentrations as well as hepatic triglyceride and 

cholesterol concentrations. Insulin resistance, relative intra-abdominal fat and an augmented liver 

weight were also apparent. The daily i.p. administration of melatonin (1 or 10 mg/kg body weight), 

starting at 4 weeks of feeding, attenuated all these changes underlying the efficacy of melatonin to 

improve a fully developed metabolic syndrome [10]. 
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The objective of the present study was to examine further the effect of melatonin given in the 

drinking solution simultaneously with fructose at two different stages of the induced metabolic 

syndrome: an initial stage, in which changes in BP and circulating lipids coexist with an augmented 

glucose tolerance and at the stage of the established metabolic syndrome, when insulin resistance and 

dyslipidemia fully develop. To attain this either a 5% or a 10% fructose drinking solution was given 

for 8 weeks.  

2. Results and Discussion 

2.1. Results  

Chow consumption (g/rat/day) was similar for controls (16 ± 1), 5% fructose-fed rats (14 ± 1) and 

10% fructose-fed rats (17 ± 2). Water consumption (ml/rat/day) was 25 ± 4 (controls), 36 ± 4 (5% 

fructose) and 41 ± 5 (10% fructose) (F = 3.53, p < 0.05, one way ANOVA, differences between 

control and 10% fructose groups being significant, Dunnett’s t test). Therefore, the individual total 

caloric intake (kcal/day was 46 ± 3 (controls), 55 ± 3 (5% fructose) and 59 ± 4 (F = 3.91, p < 0.04, one 

way ANOVA, differences between control and 10% fructose groups being significant, Dunnett’s  

t test). Chow or water consumption was not affected by melatonin. Table 1 summarizes the initial and 

final body weight, systolic BP and the changes in a number of blood analytes used clinically to assess 

the metabolic syndrome in the three groups of animals examined.  

Table 1. Body weight, systolic BP and plasma levels of several analytes in rats receiving a 

5% or a 10% fructose overload for 8 weeks. 

 Control 5% Fructose  10% Fructose F p 

Initial body weight (g) 273 ± 15 267 ± 9 269 ± 11 0.07 NS 
Final body weight (g) 354 ± 13 339 ± 11 409 ± 19 6.26 0.007 
Systolic BP (mmHg) 108 ± 4 124 ± 5 * 129 ± 5 * 5.47 0.012 

LDL-c (mg/dL) 37 ± 5 45 ± 4 54 ± 4 * 3.81 0.039 
HDL-c (mg/dL) 53 ± 2 52 ± 1 54 ± 4 0.14 NS 

Cholesterol (mg/dL) 68 ± 4 84 ± 4 * 88 ± 6 * 4.94 0.017 
Triglycerides (mg/dL) 95 ± 6 112 ± 11 233 ± 19 * 32.8 <0.001 

Creatinine (mg/dL) 1.1 ± 0.1 1.2 ± 0.2 1.1 ± 0.1 1.11 NS 
Urea (mg/dL) 44 ± 5 49 ± 6 39 ± 3 0.35 NS 

Uric acid (mg/dL) 1.8 ± 0.2 1.7 ± 0.2 1.6 ± 0.3 0.18 NS 

Shown are the means ± SEM (n = 8 per group). F values in ANOVA and the corresponding p are quoted.  

NS: not significant. Asterisks designate the existence of significant differences vs. control in a one-way 

ANOVA followed by a Dunnett’s t test. 

As compared to controls, body weight augmented significantly in rats drinking the 10% fructose 

solution while systolic BP augmented significantly in both groups of fructose-overloaded rats. Rats 

drinking the 10% fructose solution showed significant increases in circulating low density lipoproteins 

(LDL)-c, cholesterol and triglyceride levels as compared to controls while only circulating cholesterol 

increased significantly in rats receiving 5% fructose. Blood levels of HDL-c, creatinine, urea and uric 

acid were indistinguishable from controls after fructose overload (Table 1). Figure 1 depicts the 
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changes in circulating glucose levels in a glucose tolerance test in both experimental groups. When 

analyzed as a main factor in a factorial ANOVA the rats receiving the 5% fructose drinking solution 

exhibited significantly lower glycemia values after glucose administration than controls (p < 0.001). In 

contrast, the attained glycemia values in rats drinking a 10% fructose solution were significantly higher 

than in controls (p < 0.001).  

Figure 1. Glucose tolerance test in rats that had free access to chow and a drinking solution 

containing 5% fructose (upper panel) or 10% fructose (lower panel) for 8 weeks. Controls 

received tap water. Glucose (2 g/kg body weight) was administered i.p. Shown are the 

means ± SEM (n = 8 per group). Letters indicate the existence of significant differences vs. 

control (Student’s t test) a p < 0.01, b p < 0.03. For further statistical analysis see text. 

 

The efficacy of the concomitant administration of melatonin to overcome the metabolic changes 

brought about by a 5% fructose drinking solution is depicted in Figures 2 and 3. Melatonin 

counteracted significantly the changes in systolic BP in rats at this early stage of the metabolic 

syndrome but failed to affect the increased glucose tolerance observed (Figure 2).  

As shown in Figure 3, melatonin counteracted the changes in plasma cholesterol found in rats at this 

early stage of the metabolic syndrome. When analyzed as main factors in the factorial ANOVA 

melatonin decreased plasma uric acid levels (p < 0.001). 
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Figure 2. Body weight, systolic BP and glycemia after the administration of glucose  

(2 g/kg body weight i.p.) to rats that had free access to chow and drinking solutions 

containing 0.015% ethanol (control), 0.015% ethanol plus 5% fructose, 5% fructose plus 

25 μg/mL melatonin or 25 μg/mL of melatonin for 8 weeks. Controls received tap water. 

Shown are the means ± SEM (n = 8 per group). Letters indicate the existence of significant 

differences between the experimental groups after a one-way ANOVA followed by a  

post-hoc Bonferroni’s test, a p < 0.02 vs. the remaining groups, b p < 0.02 vs. rats drinking 

5% fructose. 

 

Figure 3. Plasma levels of LDL-c, HDL-c, cholesterol, triglycerides, creatinine, urea and 

uric acid in rats that had free access to chow and drinking solutions containing 0.015% 

ethanol (control), 0.015% ethanol plus 5% fructose, 5% fructose plus 25 μg/mL of 

melatonin or 25 μg/mL of melatonin for 8 weeks. Controls received tap water. Shown are 

the means ± SEM (n = 8 per group). Letters indicate the existence of significant differences 

between the experimental groups after a one-way ANOVA followed by a post-hoc 

Bonferroni´s test, a p < 0.01 vs. control; b p < 0.05 vs. control; c p < 0.02 vs. the remaining 

groups; d p < 0.04 vs. melatonin-treated rats. For further statistical analysis, see text. 
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Table 2. Effect of melatonin on body weight, systolic BP and plasma levels of several 

analytes in rats with a fully developed metabolic syndrome (10% fructose drinking solution 

for 8 weeks).  

 Control 10% Fructose  
10% Fructose + 

Melatonin 
Melatonin F p 

Initial body weight (g) 265 ± 22 284 ± 19 273 ± 16 269 ± 26 0.15 NS 

Final body weight (g) 351 ± 30 479 ± 36 a 370 ± 32 371 ± 30 3.29 0.035 

Systolic BP (mmHg) 102 ± 8 129 ± 6 a 103 ± 4 100 ± 8 b 4.18 0.014 

LDL-c (mg/dL) 39 ± 4 59 ± 6 c 19 ± 3 d 22 ± 4 17.6 <0.001 

HDL-c (mg/dL) 54 ± 7 55 ± 8 62 ± 6 58 ± 5 0.29 NS 

Cholesterol (mg/dL) 65 ± 6 88 ± 4 e 67 ± 5 71 ± 4 4.71 0.009 

Triglycerides (mg/dL) 175 ± 23 302 ± 26 f 215 ± 19 g 164 ± 13 9.04 <0.001 

Creatinine (mg/dL) 1.1 ± 0.1 1.2 ± 0.2 1.1 ± 0.1 1.3 ± 0.1 0.24 NS 

Urea (mg/dL) 44 ± 5 40 ± 6 38 ± 3 42 ± 4 0.31 NS 

Uric acid (mg/dL) 1.7 ± 0.1 1.9 ± 0.2 h 1.2 ± 0.1 1.1 ± 0.1 d 8.52 <0.001 

For experimental details see Methods. Shown are the means ± SEM (n = 8 per group). Letters indicate the existence of 

significant differences between the experimental groups after a one-way ANOVA followed by a post-hoc Bonferroni’s 

test, as follows: a p < 0.05 vs. control; b p < 0.03 vs. fructose; c p < 0.01 vs. the remaining groups; d p < 0.02 vs. control;  
e p < 0.02 vs. control and fructose + melatonin groups; f p < 0.01 vs. control and melatonin alone groups; g p < 0.04 vs. 

fructose; h p < 0.01 vs. fructose + melatonin and melatonin groups. For further statistical analysis, see text. 

Figure 4. Glucose tolerance test in rats that had free access to chow and drinking solutions 

containing 0.015% ethanol (control), 0.015% ethanol plus 10% fructose, 10% fructose plus 

25 μg/mL of melatonin or 25 μg/mL of melatonin for 8 weeks. Controls received tap  

water. A glucose solution of 2 g/kg body weight was administered i.p. Shown are the  

means ± SEM (n = 8 per group). a p < 0.02 vs. the remaining groups, one-way ANOVA, 

Bonferroni’s test. 

 

Table 2 and Figure 4 summarized the effect of the concomitant administration of melatonin on the 

changes caused by a 10% fructose drinking solution in rats. Melatonin counteracted significantly body 

weight and systolic BP at this established phase of the metabolic syndrome (Table 2). Melatonin also 
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counteracted the decreased glucose tolerance found in 10% fructose-fed rats as demonstrated by the 

lower glycemia values attained after i.p. glucose administration (Figure 4). In addition, melatonin 

treatment counteracted significantly the increase in LDL-c, triglyceride and cholesterol concentration 

(Table 2). Analyzed as main factor in the factorial ANOVA melatonin depressed plasma uric acid  

(p < 0.001) at this established phase of the metabolic syndrome (Table 2). 

2.2. Discussion  

A high fructose (50%–60%) solid diet in male rats induces metabolic alterations similar to those 

found in metabolic syndrome, including insulin resistance and hypertension [5]. However, feeding 

diets incorporating fructose in drinking water (10% w/v) for 2 weeks induce in male rats 

hypertriglyceridemia and fatty liver without modifying or even increasing plasma glucose tolerance to 

a glucose load [11,12].  

We took advantage of this approach to define two stages of the metabolic syndrome caused by 

fructose, by giving for 8 weeks either a 5% or a 10% fructose solution (in which fructose accounted for 

21%–27% and 48%–57% of total caloric intake, respectively [13]). Rats receiving 5% fructose 

exhibited a greater tolerance to glucose, as demonstrated by the lower glycemia values achieved after 

i.p. glucose administration as compared to controls. In contrast, rats having access to a 10% fructose 

drinking solution showed an impaired glucose tolerance compatible with insulin resistance. 

As compared to controls, systolic BP augmented significantly in both experimental groups whereas 

significant body weight changes were seen in rats receiving the 10% fructose solution only. Blood 

cholesterol levels augmented significantly in both groups of animals while circulating triglyceride and 

LDL-c concentration augmented significantly in rats receiving 10% fructose only. Hence, two different 

stages of a metabolic syndrome brought about by fructose could be defined: an initial stage, in which 

changes in BP and circulating lipids coexist with an augmented glucose tolerance, and an established 

stage, when a decreased glucose tolerance and circulating lipid changes were fully developed. 

A number of studies indicate that melatonin has the ability to reduce type 2 diabetes and liver 

steatosis [14,15]. In addition, melatonin treatment induces regeneration/proliferation of β-cells in 

pancreas which leads to a decrement in blood glucose in streptozotocin-induced type 1 diabetic  

rats [16]. Loss of circulating melatonin via pinealectomy results in marked hyperinsulinemia and 

accumulation of triglycerides in the liver [17].  

Long-term administration of melatonin improves lipid metabolism in type 2 diabetic rats through 

amelioration of insulin resistance [18]. In the present study melatonin decreased the high levels of 

glucose caused by a glucose load in 10% fructose-treated rats only. It also counteracted the increase in 

body weight found in rats with fully developed metabolic syndrome. These results fit with previous 

observations indicating that melatonin can effectively reduce adiposity in rats giving a high fructose 

diet [8–10] as well as in other models of hyperadiposity [19–26]. A remarkable observation in most of 

these studies is that the decrease in body weight after administering melatonin occurred in the absence 

of significant differences in food intake. A key piece of evidence in this respect is the observation that 

melatonin plays a fundamental role in the seasonal changes of adiposity of Siberian hamsters by 

increasing the activity of the sympathetic nervous system innervating white fat, thereby increasing 

lipolysis [27]. Whether or not a similar mechanism is also operative in a non-seasonal species like the 
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laboratory rat remains to be defined. Alternatively, the weight-loss-promoting effect of melatonin may 

be attributable to an increase in energy expenditure by brown adipose tissue [28].  

Collectively, the present and previous results indicate that the administration of melatonin 

effectively counteracts some of the disrupting effects seen in diet-induced obesity in rats, in particular, 

insulin resistance, dyslipidemia and overweight. It should be noted that there is a critical need for 

studies on melatonin effects on the metabolic syndrome phenotype in primates, since all animal studies 

demonstrating effects of melatonin on metabolism have been conducted in nocturnal species. 

In accordance with previous observations [9], melatonin was also effective to decrease the 

augmented BP found in rats drinking either a 5% or a 10% fructose solution. The present study 

describes for the first time that the effect of melatonin can be seen at an early phase of the metabolic 

syndrome, thus underlying its potentiality in preventing and treating the syndrome. Indeed, nighttime 

melatonin supplementation reduced nocturnal BP in otherwise untreated hypertensive men [29], 

nondipping women [30], patients with nocturnal hypertension [31] and in adolescents with type 1 

diabetes mellitus [32]. 

Melatonin, while counteracting the changes in plasma LDL-c, triglyceride and cholesterol, 

decreased plasma uric acid levels. This last effect can be of potential therapeutic value in view that 

hyperuricemia has a pathogenic role in metabolic syndrome, possibly due to its ability to inhibit 

endothelial function [33]. 

There is considerable evidence that circadian misalignment is associated with increased risk of 

obesity, diabetes, and cardiovascular disease [34]. Life style changes, such as nocturnality and overly 

rich diets, are followed by disruption of the sleep/wake cycle and other circadian rhythms. Due to its 

effects on circadian rhythmicity melatonin can provide the basis for a therapeutic strategy in metabolic 

syndrome. A consensus of the British Association for Psychopharmacology on evidence-based 

treatment of insomnia, parasomnia and circadian rhythm sleep disorders concluded that melatonin is 

the first choice treatment when a hypnotic is indicated in patients over 55 years [35].  

Since melatonin has a short half life (less than 30 min) a number of melatonin agonists with a 

longer duration of action have been developed. Concerning their potential to be used therapeutically in 

the metabolic syndrome, ramelteon (Rozerem®, Takeda Pharmaceuticals, Kyoto, Japan) attenuated 

age-associated hypertension and weight gain in spontaneously hypertensive rats [36], agomelatine 

(Valdoxan®, Servier, Neuilly-sur-Seine, France) reduced seasonal body weight increase in  

rodents [37] and Neu-P11 (piromelatine) improved insulin sensitivity in a rodent model of metabolic 

syndrome [8]. The doses and the relative potencies of the melatonin agonists employed indicate that 

the regular melatonin dose to treat insomnia (2–5 mg melatonin/day) is probably unsuitable to protect 

against several comorbilities of the metabolic syndrome. Indeed, diabetes and concomitant  

oxyradical-mediated damage, inflammation, microvascular disease and atherothrombotic risk are 

effectively prevented by high doses of melatonin in a number of animal models [38,39]. If one expects 

melatonin to be an effective cytoprotector it is likely that the low doses of melatonin employed so far 

are not very beneficial. 
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3. Experimental Section 

3.1. Animals and Experimental Design 

Male Wistar rats (60 days of age) were kept under standard conditions of controlled light  

(12:12 h light/dark schedule; lights on at 08:00 h) and temperature (22 ± 2 °C). Three experiments  

were performed.  

In experiment 1, groups of 8 rats had free access for 8 weeks to chow and one of the following 

drinking solutions: (i) a 5% fructose solution (in which fructose accounted for 21%–27% of caloric 

intake [13]); (ii) a 10% fructose solution (in which fructose accounted for 48%–57% of caloric  

intake [13]); (iii) tap water. Rat chow contained 60% carbohydrate mainly as starch with less than 

0.4% fructose. 

In experiment 2, rats were randomly divided into four groups (n = 8 per group) and had free access 

to chow and one of the following drinking solutions for 8 weeks: (i) 5% fructose; (ii) 5% fructose plus 

25 μg/mL of melatonin; (iii) 25 μg/mL of melatonin; (iv) tap water. Since ethanol was used as a 

melatonin’s vehicle, drinking solutions in groups (i) and (iv) were added 0.015% ethanol.  

Experiment 3 had a similar design, except for that a 10% fructose solution was tested.  

Chow and water consumption were measured weekly. Caloric intake for fructose-fed rats was 

calculated as sum of calories ingested as food on the basis of 2.9 kcal per gram of chow consumed and 

on that each ingested gram of fructose corresponds to 4.0 kcal.  

The daily melatonin dosage used was 1.9–3.2 mg/kg. The human equivalence dose, calculated by 

using the body surface area normalization method [40] is 0.31–0.52 mg/kg (i.e., 21–35 mg/day for a  

70 kg adult). 

3.2. BP Measurement 

Systolic BP was measured by using a manometer-tachometer (Rat Tail NIBP System; 

ADInstruments Pty Ltd., Sydney, Australia) employing an inflatable tail-cuff connected to a  

MLT844 Physiological Pressure Transducer (ADInstruments) and PowerLab data acquisition unit 

(ADInstruments). Rats were placed in a plastic holder mounted on a thermostatically controlled warm 

plate that was maintained at 35 °C during measurements. An average value from three BP readings 

(that differed by no more than 2 mm Hg) was determined for each animal after they became acclimated 

to the environment. All BP measurements were made between 09:00 and 12:00 h. 

3.3. Biochemical Assays 

A glucose tolerance test was performed at 09:00 h after a 2-h fast. Rats were anesthetized, and 

following the collection of an unchallenged sample (time 0), a glucose solution of 2 g/kg body weight 

was administered i.p. During the test, blood was collected from the saphenous vein at 30, 60 and  

120 min after glucose administration to measure glucose concentration.  

The rats were then eutanized by decapitation under conditions of minimal stress. All experiments 

were conducted in accordance with the guidelines of the International Council for Laboratory Animal 

Science (ICLAS). Trunk blood was collected and plasma samples were obtained by centrifugation of 
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blood at 1500× g for 15 min. EDTA (6 g/100 mL) was used as an anticoagulant. Samples were stored 

at −70 °C until further analysis.  

Glycemia was measured using the Accu-Check Compact kit (Roche Diagnostics, Indianapolis, IN, 

USA). The plasma lipid profile was determined by measuring the content of triglycerides, total 

cholesterol, HDL-c and LDL-c using commercially available reagent kits as per the manufacturer’s 

instructions (BioSystems S.A., Buenos Aires, Argentina). Creatinine, urea and uric acid were 

measured by standard enzymatic procedures (BioSystems S.A.). 

3.4. Statistical Analysis 

After verifying normality of distribution of data, the statistical analysis of the results was performed 

by a one-way or a two-way factorial analysis of variance (ANOVA) followed by Bonferroni’s multiple 

comparison, Dunnett’s or Student’s t tests, as stated. p values lower than 0.05 were taken as evidence 

of statistical significance. 

4. Conclusions  

Although understanding of the melatonin‘s action in the pathogenesis of the metabolic syndrome is 

yet inconclusive, studies so far points out that melatonin through its chronobiotic, immunomodulatory, 

antioxidant and antiapoptotic actions can exert beneficial effects on the metabolic syndrome 

phenotype. The present study in fructose-treated rats with an initial or fully developed metabolic 

syndrome underlines a possible therapeutical role of melatonin in the metabolic syndrome, both at 

initial and established phases. The results support the concept that melatonin can be a useful add-on 

therapy to curtail insulin resistance, dyslipidemia and overweight in obese individuals [15]. 
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