

HUMAN LONGEVITY, INC.

Integrative Metagenomics

Translational Nutrition Niels Klitgord, PhD Nov 11, 2016

Faculty Disclosure

Commercial Interest	Nature of Relevant Financial Relationship (Include all those that apply)		
	What was received	For what role	
 Human Longevity Inc 	Employment	Bioinformatic Scientist	

After participating in this presentation, learners should be better able to:

- Understand microbiome in disease and health
- Understand potential for development of novel diagnostics for assessment of microbiome

Our goal is to solve the diseases of aging by changing the way medicine is practiced.

It's not just a long life we're striving for, but one which is worth living.

MERGING GENOTYPE WITH PHENOTYPE DATA TO INTERPRET OUR GENETIC CODE

Microbes The "Unseen" Majority

Escherichia coli

Mucor circinelloides

Cvanobacteria

Methanopyrus

Staphylococcus aureus

http://archives.microbeworld.org/resources/gallery.aspx

http://membercentral.aaas.org/files/imagecache/nodefull/images/science collection/phylogenetic tree nasa 0.jpg •Invisible to the naked eye •Been around for over 3 billion years Account for more than half of earth's biomass •Found almost everywhere Extreme environments

 Important players in various biochemical processes on earth

Taxonomic classification

- •Kingdom •Phylum
- •Class
- •Order
- •Family
- •Genus
- •Species

HUMAN

INC.

LONGEVITY,

Human Microbiome: Healthy Cohort

Human Microbiome Project Consortium, Nature 2012

Different microbial communities associated with different body sites

b Metabolic pathways

Gut Microbiome-Host interaction

Pathways linking the Gut-Brain Axis

Cell Host & Microbe 17, May 13, 2015

Leaky gut: Intestinal permeability

Hemarajata P, Versalovic J. Therap Adv Gastroenterol. 2013 Jan;6(1):39-51

HUMAN

INC.

LONGEVITY.

Short Chain Fatty Acids (SCFAs) and host physiology

Figure from Review: MacFabe D, Microbial Ecology in Health and Disease, 2015

Promise: Restoration of a Disrupted "Ecosystem"

Adapted from Lozupone, et al. Nature 2012

Restored ecosystem

PROMISE: Metagenomics

Personalized therapies

Novel diagnostics

Understanding disease patterns

Understanding emerging infectious diseases

Studying microbial communities using sequencing

Gut Microbiota and Metabolic Disorders

Kyu Yeon I Nature. 2009 January 22; 457(7228): 480–484. doi:10.1038/nature07540.

A core gut microbiome in obese and lean twins

GURRENT The gut microbiota and inflammatory bowel disease

Gut-liver axis: The impact of gut microbiota on non alcoholic fatty liver disease

D. Comp M. Carte

^a Department 80131 Naples

^b Department

Received 19

Human oral, gut, and plaque microbiota in patients with atherosclerosis

Omry Koren^{a,1}, Microbiota Modulate Behavioral and Carl Johan Behr Physiological Abnormalities Associated ^aDepartment of Mic Gothenburg, S-413 4 with Neurodevelopmental Disorders 45 Gothenburg, Swe

University of Colora Elaine Y. Hsiao, 1,2,* Sara W. McBrid

Janet Chow,¹ Sarah E. Reisman,² J ¹Division of Biology and Biological Engin ²Division of Chemistry and Chemical Eng ³Alkek Center for Metagenomics and Mix ⁴These authors contributed equally to thi ¹Correspondence: ehsa@caltech.edu (I http://dx.doi.org/10.1016/j.cell.2013.11.1

Interactions Between the Microbiota and the Immune System

Lora V. Hooper,¹* Dan R. Littman,² Andrew J. Macpherson³

maroli^{b,c},

oolic Research, University of cine, University of Gothenburg, S-413 1 ^eHoward Hughes Medical Institute,

•~1500 bases long

UMAN

ONGEVITY.

•Found in all bacteria and archaea

•Gene contains both fast and slow evolving regions

•Taxonomic marker (*Woese and Fox,* PNAS 1977)

•Some organisms contain multiple copies of 16S rRNA gene

•Current high throughput sequencing technologies cannot sequence entire gene and hence target the variable regions on the gene

Variable regions V1 through V9

Cellular Overview of Metabolism

E. coli K12 substr. MG1655

E. coli O157:H7 str. 1044

Image generated by EcoCyc (Keseler et al. 2013)

These strains have nearly identical 16S rRNA genes

The Complexity of Metagenomics

HUMAN LONGEVITY,

NC.

Isolated genome - single source of DNA

Microbiome Data Processing Workflow

Microbiome Pipeline Output

Taxonomic composition

Microbial strain abundance

Genome assembly of novel strains

Metabolic pathway reconstruction

Functional composition Gene content

Genes of interest Antibiotic resistance Virulence factor Pathogenecity factor

Health Nucleus/Collaborators

Allows dynamic cohort building

Microbiome Literature Curation

Curated associations between bacteria with disease and Health, as well as annotations of Probiotics organisms and Enzymatic functions.

Integrated Microbiome-Host Analysis

UMAN

ONGEVITY.

Sample Collection and Preparation at HLI

Mechanisms to Ensure Comparable Data

- Standardized Sample Collection
- Standardization of Library Preparation
- Per Flow-cell Run Controls
- Post Sequencing QC assessment
- Minimal coverage per sample

QC Processes: Sample Stabilization

SCIENTIFIC REPORTS

Received: 22 April 2016 Accepted: 25 July 2016 Published: 25 August 2016

OPEN A robust ambient temperature collection and stabilization strategy: Enabling worldwide functional studies of the human microbiome

Ericka L. Anderson¹, Weizhong Li^{1,2}, Niels Klitgord¹, Sarah K. Highlander², Mark Dayrit¹, Victor Seguritan¹, Shibu Yooseph^{1,2}, William Biggs¹, J. Craig Venter^{1,2}, Karen E. Nelson^{1,2} & Marcus B. Jones¹

Stabilization of Samples with Reagent Comparable to Freezing

Anderson EL et al. A robust ambient temperature collection and stabilization strategy: Enabling worldwide functional studies of the human microbiome. Sci Rep. 2016 Aug 25

HUMAN LONGEVITY, INC.

Stabilization Enables Robust and Uniform Sample Collection

Treatments Grouped By Samples

Anderson EL et al. A robust ambient temperature collection and stabilization strategy: Enabling worldwide functional studies of the human microbiome. Sci Rep. 2016 Aug 25

NAS

Library preparation methodology can influence genomic and functional predictions in human microbiome research

Marcus B. Jones^{a,b,1}, Sarah K. Highlander^b, Ericka L. Anderson^a, Weizhong Li^{a,b}, Mark Dayrit^a, Niels Klitgord^a, Martin M. Fabani^a, Victor Seguritan^a, Jessica Green^a, David T. Pride^{c,d}, Shibu Yooseph^{a,b}, William Biggs^a, Karen E. Nelson^{a,b}, and J. Craig Venter^{a,b,1}

^aHuman Longevity, Inc., San Diego, CA 92121; ^bGenomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037; ^cDepartment of Pathology, University of California, San Diego, La Jolla, CA 92093; and ^dDepartment of Medicine, University of California, San Diego, La Jolla, CA 92093

Library Preparation Method Impacts Species Composition

Jones MB et al, Library preparation methodology can influence genomic and functional predictions in human microbiome research. Proc Natl Acad Sci U S A. 2015 Nov 10

Overview of HLI MB Samples

Project	Sample Type	
Liver/Cirrhosis Collaboration	Stool	
UTI Collaboration	Urine	
Twin Collaboration	Stool	
IBD Collaboration	Stool	
Anti-biotic Usage Colaboration	Stool	
n of One Studies	Stool/Tongue	
Internal Studies	Stool	
Health-Nucleus	Stool/Tongue	

3000 Microbiome Samples Sequenced Averaging ~5.5GB/sample

Taxonomical Abundance Visualization Principal Component Analysis

Cohort

- Liver Study
- n of One
- Tongue Sample
- UTI Study
- Twin Study
- IBD Study
- Antibiotic Usage Study
- Health-Nucleus

HUMAN LONGEVITY, INC.

Cohort

- Liver Study
- n of One
- Twin Study
- IBD Study
- Antibiotic Usage Study
- Health-Nucleus

A Healthy Microbiome is Important for a Healthy Human

HUMAN LONGEVITY.

INC.

Figure courtesy of Dr. Sarah Highlander, JCVI

What does a "Healthy" Sample look like?

No clear criteria or definition.

Settled on single samples from individuals not known to have any disease associated phenotypes.

Species Occurrence in Healthy Samples Prevalence vs Abundance

HLI Healthy

*log mean abundance calculated using non-zero values only

Prevalence: proportion of samples where the species is detected

Healthy cohorts: Comparison of HLI data with that from the Human Microbiome Project (HMP)

Prevalence has more concordance than abundance between HLI healthy and HMP

Use of a maximization function on the most prevalent species from the HMP and HLI Healthy Cohorts identifies 49 species found in > 90% of both sample sets.

More then 30% (n=17) of these species have strains that are used or proposed to be used as probiotics.

More then 30% (n=15) of these species are very poorly characterized.

Reconstructed Microbial pathways and cross-feeding mechanisms in Healthy Core contribute to SCFA formation in the human gut

Figure from Rios-Covian et al., Frontiers in Microbiology, 2016

Many Putative Pathogens Found!

In healthy samples:

- 23 Putatively pathogenic species found at 10% prevalence.
- 5 Putatively pathogenic species found at 80% prevalence.
 - (including *Peptoclostridium difficile* and *Escherichia coli*)
- None were free of all putative pathogenic species.
- Know virulence factors were rare.

Maybe the difference between health and disease is not just who is there, but rather what they can do and who is not there?

Looking for a signal: INC. IBD (n=83) vs Healthy (n=224)

Cohort

HLI Healthy

IBD

Common Diversity Metrics are Lower in IBD Samples

HUMAN LONGEVITY, INC.

IBD Samples are Composed of a Less Consistent Set of Species

46 Organisms found in > 98% of Samples 136 in > 80% No single organisms found in > 98% of Samples Only 15 organisms found in > 80% of Samples

Overall Loss of 'Common' Organisms

HUMAN LONGEVITY, INC.

IBD Pathogens are More Likely to Have Reconstructed Virulence Factors

Healthy Species Prevalence	Healthy VF + Species Prevalence	IBD Species Prevalance	IBD VF + Species Prevalence
0 020	0 170	0 000	0.240
0.830	0.179	0.000	0.349
0.477	0	0.325	0.012
0.062	0	0.144	0.036
	Healthy Species Prevalence 0.830 0.477 0.062	Healthy Species PrevalenceHealthy VF + Species Prevalence0.8300.1790.47700.0620	Healthy Species PrevalenceHealthy VF + Species PrevalenceIBD Species Prevalance0.8300.1790.8800.47700.3250.06200.144

In total 34 of 83 IBD samples and 42 of 224 Healthy samples reconstruct any putative pathogens with any virulence factor.

This is significant using a Chi-Squared contingency test (p-value <= 0.004)

- Healthy samples seem to share a core set of species.
- We reconstruct many putative pathogens in healthy samples, but few with any detectable virulence factors.
- IBD samples have a smaller and less well defined core set of species.
- Putative pathogens identified in IBD Samples are more likely to be reconstructed with a virulence factor than Healthy Samples.

Acknowledgements

Microbiome Group

- •Karen Nelson
- •Weizhong Li
- •Shibu Yooseph (UCF)
- Victor Seguritan
- •Marcus Jones
- •Ericka Anderson
- •Mark Dayrit
- Sarah Highlander (JCVI)Bill Greenwald (UCSD)

Other HLI and Health Nucleus

- •Chad Garner
- •Helen Messier
- Scott Skellenger
- •Bill Biggs
- •Tao Long
- •Efren Sandoval
- •Padma Kodokula
- •Brandon Hunter

After participating in this presentation, clinicians should be better able to:

 Educate patients on the role of the microbiome in disease and health